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Preface

The work presented in this thesis is part of my research conducted in 2017-2020 at

Michigan Technological University. Mission optimization of mobile multi-agent sys-

tems is critical in energy scarce applications. This work applies the genetic algorithm

for mission optimization in applications of autonomous mobile microgrids and agent

resource scheduling for intelligence, surveillance, and reconnaissance missions.

Chapter 1 presents an introduction to this thesis by summarizing the optimiza-

tion applications, problems, and solution method investigated. Chapter 2 provides

background details on previous work in autonomous mobile microgrids and resource

scheduling control and optimization, along with the functionality of the genetic al-

gorithm used. Chapter 3 presents a genetic algorithm approach to optimize energy

resource locations and network connections in an autonomous mobile microgrid sys-

tem. The content in this chapter has been published in reference [2]. Chapter 4

details a genetic algorithm strategy to optimize the recharging of distributed loads

to extend their operational life. The content in this chapter has been published in

reference [3]. Chapter 5 presents a similar strategy to Chapter 4 in determining

the optimal recharging of mobile UAVs to increase their operational time for various

reconnaissance missions. Conclusions and future work considerations are presented

in Chapter 6.
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Abstract

As technology advances, the use of collaborative autonomous mobile systems for vari-

ous applications will become evermore prevalent. One interesting application of these

multi-agent systems is for autonomous mobile microgrids. These systems will play

an increasingly important role in applications such as military special operations for

mobile ad hoc power infrastructures and for intelligence, surveillance, and reconnais-

sance missions. In performing these operations with these autonomous energy assets,

there is a crucial need to optimize their functionality according to their specific ap-

plication and mission. Challenges arise in determining mission characteristics such as

how each resource should operate, when, where, and for how long.

This thesis explores solutions in determining optimal mission plans around the ap-

plications of autonomous mobile microgrids and resource scheduling with UGVs and

UAVs. Optimal network connections, energy asset locations, and cabling trajecto-

ries are determined in the mobile microgrid application. The resource scheduling

applications investigate the use of a UGV to recharge wireless sensors in a wireless

sensor network. Optimal recharging of mobile distributed UAVs performing recon-

naissance missions is also explored. With genetic algorithm solution approaches, the

results show the proposed methods can provide reasonable a-priori mission plans,

considering the applied constraints and objective functions in each application. The

xxv
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contributions of this thesis are: (1) The development and analysis of solution method-

ologies and mission simulators for a-priori mission plan development and testing, for

applications in organizing and scheduling power delivery with mobile energy assets.

Applying these methods results in (2) the development and analysis of reasonable

a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios.

This work could be extended to include a more diverse set of heterogeneous agents

and incorporate dynamic loads to provide power to.
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Chapter 1

Introduction

1.1 Overview

Microgrids are systems of interconnected energy sources and loads within a defined

boundary. Such systems provide an added benefit to the common utility grid in

that they provide localized, distributed, renewable, and more controllable energy

resources. These resources may include photo-voltaic (PV) arrays, wind turbines,

diesel generators, and energy storage, providing more resilient, clean, and efficient

energy. Microgrids have the ability to operate in synchronous with the common

utility grid system or independently in ”island mode.” These energy systems are a

relatively new technology being adapted by residential developments, businesses, and

1
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universities.

Autonomous mobile microgrids employ many of the same characteristics as stationary

microgrids but have the added benefit of mobility and autonomy. These autonomous

microgrids operate by navigating to areas with loads in need of the power infrastruc-

ture they provide by directly connecting to or interconnecting to the load or system of

loads. Homogeneous or heterogeneous agents with the functionality of energy gener-

ation, power conversion, energy storage, and power buses for energy distribution, are

asset types used in these mobile energy systems. The assets incorporate power trans-

fer via cabling connection, wireless, or other technologies depending on the mission

environment and objectives. Once connected to serve the existing loads, the assets

can adapt to the environment as needed to provide more optimal or reliable energy.

Environment changes, for example, include changes in the number of available energy

assets or loads, load prioritization, or changes in the whether conditions. Adaptabil-

ity is done by disconnecting from the loads, re-configuring how the mobile microgrid

system is connected, and/or actively controlling the power generation and distribu-

tion. These mobile systems are beneficial in providing power infrastructure where it

is otherwise nonexistent, along with human denied environments, and desolate areas.

Useful applications include disaster recovery, planetary exploration, military forward

operating bases, and intelligence, surveillance, and reconnaissance (ISR) missions.

Autonomous mobile microgrids, with their ability to adapt to dynamic mission needs,

2
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is an example of an important developing use of collaborative autonomous mobile

systems. A critical aspect in deploying these multi-agent systems is to determine

which role each asset should play in the mission. Furthermore, what actions and

interactions should occur between agents to maximize their use as a complete system?

These mission characteristics are crucial to consider in missions where asset energy

capacities are scarce, such as in the remote or desolate areas in the applications

previous described.

This chapter first briefly introduces details on the two larger related topics of opti-

mization in autonomous mobile microgrids and resource scheduling. Next, the genetic

algorithm (GA) method used for optimization in these applications is explained. Mo-

tivations and objectives are then presented, followed by an organization description

for the remainder of this thesis.

1.2 Autonomous Mobile Microgrid Architecture

Optimization

Microgrids are energy systems that can operate dependently or independently of the

established grid system. The power system comprises distributed generation resources

(DGRs) such as diesel generators, photovoltaic (PV) arrays, and wind turbines. Mi-

crogrids enhance the resiliency and efficiency of the traditional power grid system by

3



www.manaraa.com

operating local DGRs with adaptive control methods [4], [5]. Autonomous mobile mi-

crogrids serve a similar function as traditional microgrids, but they are ad hoc in their

ability to move to different locations to serve different loads. A concept image of three

agents in a mobile microgrid, equipped with a PV array, diesel generator and power

conversion are shown in Figure 1.1. These microgrids can reconfigure and adapt to

optimize performance as required. One application for specifically using autonomous

mobile microgrids is for military electrical infrastructure. For example, when a mili-

tary forward operating base (FOB) or a specialized unit needs a rendezvous point with

power available, these UGVs can traverse to and connect to existing loads to set up

the power infrastructure. This saves time in time-critical missions and helps to keep

military personnel out of harm’s way. Another application for the use of autonomous

mobile microgrids is in post natural and man-made disasters such as hurricanes and

large explosions, which often leaves thousands of people without power. These mobile

agents can maneuver to locations too obstructed for larger vehicles or too dangerous

for humans to traverse and connect to critical loads such as emergency medical shel-

ters. For example, Figure 1.2 shows heterogeneous agents interconnected to power a

communication tower. When energy and resources are scarce as described in these

scenarios, it is crucial to optimize the operation of the microgrid systems as much as

possible to maximize their utility and effectiveness. Architecture optimization, as ap-

plied to autonomous mobile microgrids, is determining the operational characteristics

which satisfy constraints and optimizes an objective function. Optimization of many
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operational parameters is possible, including energy source power output settings,

functionality and use of energy storage, and the number of assets used. Chapter 3

investigates the operational parameters of optimal network connections, energy asset

locations, and cabling trajectories for several case studies.

Figure 1.1: Concept image of autonomous robot energy resources with
renewable sources, diesel generator, and power conversion © 2019 IEEE.

Figure 1.2: Autonomous robot energy resources positioned to power a
communication tower © 2019 IEEE.
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1.3 Resource Scheduling Optimization

Resource scheduling is a crucial aspect in planning operations for the required collab-

oration or use of multiple resources. Optimization of the resources’ time and energy

is vital in achieving a common goal in the best way possible. Resource scheduling

applies to many applications, a popular application being scheduling machines for

stages in manufacturing processes. For this application, it is important to sched-

ule the machine resources accordingly to maximize their usage. Many factors may

play a role in the scheduling of the machines such as how long a specific machine

process takes, consumer demand of specific manufactured parts, profit earnings of

specific parts, and the overall objective. Machining time and energy is expensive and

sub-optimal process scheduling causes extra costs in expenses.

Another application for resource scheduling is in power transfer to other distributed

resources to extend their battery life. For example, in using wireless sensor networks

(WSN), unmanned aerial vehicles (UAVs), or quadcopters/drones, the on-board bat-

tery capacity often limits their operation. Other limited but larger energy resources,

such as unmanned ground vehicles (UGVs), can periodically recharge them to extend

their battery life and operation. For recharging WSNs, as examined in Chapter 4,

periodic recharging to optimize an objective function and satisfy constraints will de-

pend on several factors such as the number of distributed sensors, their locations,
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and their respective net power usage. Determining the optimal charging times, with

respective durations and locations, is investigated for this case. Similar to WSNs,

the optimal use of UAVs in military reconnaissance is examined in this thesis in

Chapter 5. As with WSNs, if optimal recharging times, durations, and locations are

determined, then the UAVs’ missions can be optimally extended, leading to more

intelligence gathered, or time saved in this operation. GAs are used to determine

optimal solutions in these operational scenarios involving WSNs and UAVs.

1.4 Genetic Algorithms

Because a locally optimal solution for these types of problems and applications de-

scribed is often insufficient, global heuristic methods such as GAs [6], Particle Swarm

algorithm (PSA) [7], and Simulated Annealing [8] are utilized to find a good solu-

tion. Although none of these algorithms are guaranteed to converge to a globally

optimal solution, they have been shown to provide good global solutions in a variety

of applications. Because some problems involve a variable-sized design space (VSDS),

zero-one programming can be used to determine optimal design architectures, which

is a method applied in this work. This is similar to hiding genes in hidden genes

genetic algorithms (HGGA). Since this involves integer constraints, GAs are selected

for determining best solutions, for it can easily apply this integer constraint and vari-

ety of others. In the context of this thesis, the solutions found using GAs are referred
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to as the optimal solution(s). A more in-depth description of GAs is presented in

Chapter 2.

1.5 Motivations and Objectives

With the expected increase in use of collaborative autonomous systems to perform

tasks normally done by humans or beyond human capability, this thesis presents work

supporting the optimal use of these autonomous systems. Specifically, this thesis

investigates global optimal solutions to problems presented in mobile microgrids and

applications in resource scheduling. The question this work helps answer is “Now

that we have the autonomous systems to carry out this task, how to we make the

best use their energy resources to complete the mission in an optimal manner?”

1.6 Thesis Organization

In preparing this thesis, papers developed during this research are included. The re-

mainder of this thesis is organized as follows. Chapter 2 examines background details

and previous work in optimization and control methods as applied to autonomous

mobile microgrids and resource scheduling. Background details on the operation of

8
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GAs is also described. Chapter 3 covers the use of GAs in optimizing mobile mi-

crogrid architectures, where several case studies are discussed. Chapter 4 applies the

GA optimization method in the scheduling of recharging distributed stationary loads.

Chapter 5 extends on Chapter 4 by applying the methods and modeling to optimally

recharge UAVs which are performing reconnaissance. Finally, the conclusion of this

thesis and future work considerations are presented in Chapter 6.
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Chapter 2

Background

2.1 Introduction

This chapter provides background and details for the autonomous microgrid research

presented in this thesis. First, supporting information and prior research on au-

tonomous mobile microgrids is presented. Next, details and related research on

resource scheduling are explained. Finally, features of the genetic algorithm (GA)

optimization method utilized in this work for solving the presented problems are

explained.
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2.2 Autonomous Mobile Microgrid Architecture

Optimization

The vision of the smart grid is to increase the resilience and efficiency of the utility

grid in the presence of increasing natural disasters such as hurricanes and floods.

This vision includes the integration of resiliency and efficiency into all operations of

the present utility grid system, including power generation, transmission, and dis-

tribution [9]. A microgrid is an energy system that can operate dependently or

independently of the established grid system. The microgrid comprises distributed

generation resources (DGRs) such as diesel generators, photovoltaic (PV) arrays, and

wind turbines. Microgrids play an important role within the vision of smart grids

as they can operate dependently or independently (island mode) of the established

grid system by these DGRs. DGRs have solved resiliency issues when problems in

the utility grid arise. DGRs, such as diesel generators, are widely used to restore

power in buildings or individual homes in times of need. Employing these DGRs

nationwide, automatically, systematically, and efficiently to restore power to those in

need is a proposed solution to increase grid resiliency. Integrating these energy assets

into the utility grid system comes with many challenges, such as the destruction of

necessary infrastructure with a natural disaster, along with the communication and

control required following the disaster [10]. Despite these challenges, microgrids are
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being adapted in many universities, businesses, and residential areas[11].

Autonomous microgrids can help mitigate these issues of unavailable or unreliable

electrical grid infrastructure. The center of Agile and Interconnected Microgrids

(AIM) at Michigan Technological University is engaging in research to advance the

development and understanding of microgrids and energy networks from multiple

perspectives. In addition to AIM, other researchers are also working to support this

advancements in intelligent microgrids. The work in [12] presents and tests a hierar-

chical control approach for DC microgrids with simulation case studies based on the

Illinois Institute of Technology AC microgrid. Results show the control strategy as

a reliable method for a DC microgrid to respond to emergencies and its operation in

steady state. Another example of DC control for microgrids is in [13] which demon-

strates an autonomous microgrid. The work shows simulated results of multiple DGRs

and energy storage systems operating in a variety of modes with smooth transitions

between them. These, along with many other control architectures investigated give

insight into the utilization of autonomous microgrids [14], [15].

In parallel with ongoing and previous research in power control methods for au-

tonomous microgrids, the additional layer of mobility in energy assets is also being

explored and presents additional challenges. [16] describes a multi-agent system of

robots for intelligence gathering in post disaster scenarios. Furthermore, [17] presents

optimal positioning and real-time allocation of mobile emergency vehicles to reduce
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power outage time after natural disasters. [18] also investigates the use of mobile

emergency resources for adaptive multi-microgrids for power restoration in extreme

conditions such as natural disasters. The optimal microgrid formation method is

shown to be effective in serving critical loads and remaining resilient by applying

radial or looped topologies with proper positioning of DGRs.

However, previous work in the concept of autonomous mobile microgrids does not

consider optimal positioning of energy assets along with optimal network connections

in off road, location restricted areas. This detail is important when considering a post

natural disaster area with obstacles to avoid or restricted areas of access. These opera-

tional area characteristics make a difference in optimal solutions, and the case studies

provided reflect this. Much research points to a future with potential for improved

and more resilient tactical electrical infrastructure with the use of autonomous mobile

microgrids. This is the focus of the work presented in Chapter 3. The next section

describes background details and previous work in resource scheduling optimization,

which is the focus of Chapters 4 and 5.
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2.3 Resource Scheduling Optimization

Resource scheduling has been and continues to be a high interest area of research.

Much of this research falls under common terms such as scheduling or task alloca-

tion [19]. There are many studies on developed variations of computer science and

engineering problems such as Central Processes Unit (CPU) scheduling [20], and the

Job-Shop Scheduling Problem (JSP) [21]. These problems are similar in that one

needs to decide how to make best use of available resources.

In CPU scheduling, an algorithm or multiple algorithms are used to determine which

processes should run in what order. This scheduling is critical to optimize Operating

System (OS) functionality. In works such as [22] and [23], an optimized round-robin

(RR) CPU scheduling algorithm is proposed which improves the many drawbacks of

the traditional RR architecture. CPU scheduling and the Single Machine Scheduling

(SMS) problem [24] have a close relationship in that a single machine or resource limits

the scheduling of many jobs or processes by only being able to process one job at a

time. The JSP extends the SMS problem in the ability to schedule jobs to multiple

machines available. [25] presents an improved algorithm for the single machine serial-

batch scheduling problem with rejection to minimize the total completion time and

the total rejection cost. In [26], GAs are used with modified parameter settings to

solve the job shop scheduling problem and is successful in achieving better results
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compared to manual scheduling, as applied to real data from a fastener manufacture.

Resource scheduling encompasses another type of optimization problem of task alloca-

tion. Task allocation has a close relationship to the work presented in Chapters 4 and

5 because of the described applications of collaborative autonomous systems such as

planetary exploration [27] and cooperative surveillance and reconnaissance [28]. Fur-

ther examples of previous work in collaborative autonomous systems is presented in

Chapters 4 and 5.

2.4 Genetic Algorithms

Genetic Algorithms (GAs) are part of a class of evolutionary algorithms in global

optimization techniques. GA utilization as an optimization method began in the late

1980s and is still a popular technique used today. This method has been success-

fully applied to optimize problems in engineering, transportation, scheduling, and

many others. Although there is no guarantee that the solutions of GAs are globally

optimum, they provide good solutions efficient in many applications [2].

Deoxyribonucleic Acid (DNA) [29] is what makes every person unique. Chromosomes

contain many genes which make up the DNA structure. These genes are coded to

make specific proteins for cells with different functions in the body. This causes cells
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to not read or recognize all genes. For example, a cell in your lungs does not require

the same genes as a cell in your eye does to function correctly, so the respective lung

and eye cells shut off these genes. The genetic coding can shut off these genes to tell

what genes a cell should or should not read [30]. Survival of the fittest and the idea of

populations evolving overtime is the basis for the inspiration of GAs in optimization.

GAs use the concept of genes in a chromosome that evolve progressively. A general

representation of GN genes in a chromosome (design variables in a solution) is shown

in Figure 2.1, and the general GA process is shown in Figure 2.2. The population-

based algorithm creates a population of chromosomes, which represent different so-

lutions in the solution space. Each chromosome comprises genes which represent the

design variables which make up a particular solution. The chromosomes go through

the processes of selection, crossover, and mutation to explore the solution space and

find the optimal solution. The algorithm generates a new population every time the

previous population evolves through these processes, which is the next generation.

This next generation is the start to the next iteration in the optimization computa-

tion. Meeting some stopping criteria such as a maximum number of generations or

minimal change in the solutions’ cost ends this iterative process. An initial random

population is normally used to begin the optimization, but there are options to sup-

plement in solutions, usually some known to the user to be good. Further details of

the processes of selection, crossover, and mutation are discussed in the next section.
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Figure 2.1: General representation of a single chromosome with GN genes.

Figure 2.2: Flow chart of genetic algorithms © 2019 IEEE.

Selection is the first main operation in chromosome/gene evolution. It is the pro-

cess in determining which chromosomes will exist in the next generation and/or will

be parents to create children which will exist in the next generation. This selection

process has many known methods for use in GAs. One popular method of this is
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tournament selection where a percentage of the best performing chromosomes are

utilized as parents for creating the next generation or as an elite chromosome to sur-

vive to the next generation [31]. Other methods include roulette wheel and stochastic

uniform [32].

The crossover operation creates new children from the selected parents to move on to

the next generation. This crossover operation also has various methods which can be

used. Figure 2.3 shows one of the simplest crossover operations where a segment of

each chromosome is exchanged between Parent 1 and Parent 2 to create Child 1 and

Child 2. This exchanged chromosome segment is randomly chosen by indexing into

the chromosomes at the crossover point. This method is known as a simple crossover

[31].

Mutation is the process of replacing a randomly selected design variable (gene) in a

design vector (chromosome) with a randomly generated one. This is done to diversify

the solutions being searched to expand this search space. This process can be seen in

Figure 2.4 [31].

The next chapter presents the problem of determining optimal positioning, connec-

tions, and cabling trajectories of energy resources for an autonomous mobile microgrid

in the operating field. A variety of test cases are investigated followed by a discussion

of the results. Further optimization scenarios are expanded on from the test cases,

which are then explained.
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Figure 2.3: Simple crossover operation in GAs.

Figure 2.4: Simple mutation operation in GAs.
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Chapter 3

Optimal Positioning of Energy

Assets in Autonomous Robotic

Microgrids for Power Restoration

3.1 Introduction

The application1 of small connected micro-sources is referred to as distributed energy

resources. These micro-sources are energy sources that contribute to the energy uti-

lized in a microgrid system. They can have capacities of 100 kWh, depending on the

1The material in this chapter is reprinted in majority from [2]
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resource type, and are distributed throughout the power system. They provide power

to the end loads and can operate autonomously by disconnecting from the centralized

grid. This makes the micro-sources more flexible and resilient while reducing the

maintenance and pollution compared to traditional centralized-power distributions.

When the distributed energy network is interconnected with storage, control systems,

and the loads, the resulting autonomous grid is known as a microgrid. In times of

crisis such as natural or man-made disasters, microgrids can disconnect from the main

grid and operate autonomously using the local energy generations [33, 34].

Multi autonomous vehicles (multi robots) have been used as mobile sensor networks

for surveillance and data collection for different purposes in air, ground, and water

[35, 36, 37]. A key contribution of this work is the integration of ground autonomous

vehicles and electric power assets to create self-organizing, ad-hoc microgrids. Three

autonomous microgrid robots, each with different power network functionality, are

shown in Figure 1.1 from Chapter 1. One has renewable energy generation and

storage capability, another has a conventional diesel genset and the third contains

intelligent power electronics for conversion and connection. After assessing the power

requirements and available resources, they would physically organize and electrically

interconnect themselves to form a microgrid. For example, Figure 1.2 from Chapter 1

shows the robots interconnected to power a communication tower. The intelligent

power electronics and distributed agent based control will regulate power flows at

desired voltage and frequency levels to meet load demands.
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In a disaster area there can be debris and obstacles in the field of operation [38, 39]

where power is to be restored to critical loads [40]. The autonomous microgrid robots

that enter the disaster field need to optimally position the energy resources to meet

the load requirements for operation as well as to minimize the robotic microgrid

assets, such as cabling.

In this work it is assumed that the locations of loads and obstacles are pre-mapped

through unmanned aerial vehicles, satellite surveillance [41, 42] or some other tech-

nology. The maps and locations are available to the autonomous robots resources

to determine optimal positioning, which is the algorithm presented in this chapter.

Then, once the optimal positions are determined, the next task is to autonomously

navigate the resources to the defined positions, connect the cabling, and energize the

network which are techniques presented in [43, 44]. In addition, further resource re-

allocations and optimizations should be made as disaster recovery efforts occur. As

fixed and permanent power and communication links are re-established, the mobile

robotic resources can be removed or re-deployed to other areas as conditions change

over time. This can be considered as the initial phase of post disaster restoration

mission where the primary task is to restore the power in urgent structural zones.

The next phases of restoring power in such environments, which usually consist of

repairing the structures can take up to weeks or months and is out of the scope of

this work. The optimization method in this chapter finds the source location and

inter-node connections such that all the loads are fed.
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Many algorithms are used in various optimization engineering applications. Genetic

Algorithms (GAs) are part of global optimization techniques in evolutionary com-

putation, which have been successfully applied to optimize problems in engineering

design, transportation, and scheduling to name a few. GA utilization as an optimiza-

tion tool began in the late 1980s and continues to be a very popular technique today

[31]. Although there is no guarantee that the solution of GAs are globally optimum,

they provide local optimum solutions that are sufficient in this application.

In this chapter, the system modeling is expanded in Section 3.2. First, the general

rules of numbering the nodes and the lines are explained and then the equations to

calculate the voltage at the nodes are discussed. The objective function is defined,

and the constraints of the problem are presented. In Section 3.3 the optimization

algorithm is described and several test cases are solved in Section 3.4. Section 3.5

discusses the effects of the optimization algorithm setup and the conclusions are then

presented in Section 3.6.

3.2 System Modeling

Assume that within a physical field of operation there are Nl number of loads and Ns

number of energy sources. The sources represent the mobile robots (Figure 1.1) and

the loads represent the critical power usage structure that need to be restored. There
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are some obstacles in the field, and the locations of the loads and obstacles are known

and fixed. The problem to be solved is to choose the source positions and connections

to the loads via lines that optimizes a desired objective function, while satisfying

constraints. The objective function can include power loss, bus voltage, power, etc.,

and some constraints are applied to the problem such as ensuring all loads are served

at nominal voltage. The energy sources in this problem will produce DC power,

with the problem modeled as a DC circuit. Without loss of generality, the loads

can be modeled as resistances and the sources as voltage sources. Figure 3.1 shows

an example of the problem with two sources (shown as V1 and V2) and three loads

(shown as R1, R2, and R3). In the example in Figure 3.1, obstacles are omitted to

help simplify the example problem. This problem in the real world would be a natural

disaster situation where the loads may be the hospital buildings in a neighborhood

and the sources are generators on mobile vehicles. The vehicles can move around the

neighborhood to serve the buildings. Since the power storage is limited, they should

decide where to have their stations and how to connect to the buildings such that the

objective function is minimized.

The general proposed system modeling and optimization procedure is

1. Assume locations and voltage requirements of loads are provided.

2. Assume operators would deploy sufficient generation capacity with robots to

support loads.
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3. Assume locations of obstacles are provided.

4. Create a candidate electrical nodal network where every load bus is connected

to every source bus and every other load bus.

5. The resistance of the lines between buses is proportional to physical distance in

the field of operation. Optimize objective function by minimizing line distances

with object field or eliminate lines altogether.

3.2.1 Indexing Buses and Lines

In this problem, the numbering of nodes is important to the general mathematical

formulation of the system. First, enumerate the nodes in the following order:

† First, source nodes are indexed(i = 1 . . . Ns).

† Second, load nodes are indexed (i = Ns + 1 . . . Ns +Nl).

In the example of Figure 3.1, the source nodes are first indexed (number 1 and 2).

Then, the load nodes are indexed (number 3, 4, and 5).

For the next step, enumerate the lines (resistance connections). These are the cables

connecting the source nodes to the loads. Start from the first source and connect

it to the loads. The indices of the resistance in each line is in accordance of the
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Figure 3.1: node numbering starts from the first source to the last source
and then continues from the first load to the last load.

corresponding node. For example, in Figure 3.2 the node number 1 is connected to

the node number 3 (R4), node number 4 (R5), and node number 5 (R6). Then, the

same is done for the next source and it continues until all sources are connected to

the loads.

In the last step, the load nodes are connected to each other, starting from the smallest

node number. As shown in Figure 3.2, node number 3 is connected to node number

4 (R10) and 5 (R11) and node number 4 is connected to the only remaining node

which is node number 5 with resistance R12. By this sequencing the definition of an

admittance matrix [45] is defined and will be presented further in Section 3.2.2.
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Figure 3.2: line numbering starts from the first source to each load, then
second source to each load, then from each load to the remaining loads, from
the lowest index to the highest.

3.2.2 Formulate Nodal Bus Admittance Matrix

Consider the system in Figure 3.2 in a grid map. Assume that the total number of

nodes is m and the total number of lines is n. The nodal bus equation that relates

bus voltage to the injected currents is

I = YbusV (3.1)

where the admittance matrix [45] can be found from

Ybus = A[Yy]A
T (3.2)
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where Yy is

Yy =



1
R1

0 . . . 0 0

0 1
R2

0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
Rn


(3.3)

where Ri is the ith resistance in the map. The matrix A is the (m+ 1)× n incident

matrix whose row are the node location and columns are the branch lines.

A =


a0,1 . . . a0,n

...
. . .

...

am,1 . . . am,n

 (3.4)

ai,j ∈ (−1, 0, 1) ∀i, j. (3.5)

This matrix shows the routing of the currents with respect to the node and branch

lines. The elements of A are 0 if no connection exists between node and line, 1 if

the line is connected to the node and current is leaving the node, or −1 if line is

connected to the node and current is entering the node. In addition, note that the

first row of A is ground or the node 0. This ground node is at zero voltage, and other

voltages are measured with respect to it.

For example, for the system shown in Figure 3.2, the incident matrix from [45] would
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be

M =



−1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

1 0 0 −1 0 0 −1 0 0 1 1 0

0 1 0 0 −1 0 0 −1 0 −1 0 1

0 0 1 0 0 −1 0 0 −1 0 −1 −1



(3.6)

Note that the rows represent the nodes including ground and nodes 1 to 5. The

columns represent the lines (resistance) connected to the nodes. The label notations

are shown in Eq. 3.7 for better understanding. As an example, consider the third

row, N2. The first element in this row shows that R1 is not connected to N2 and

its corresponding value in the matrix is 0. For the element in third row and seventh

column (N2-R7), the value is 1 which implies that R7 is connected to N2 and the

current is leaving node N2. This corresponds to the definition of matrix A and the

circuit in Figure 3.2. The rest of the matrix is build similarly.
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A =



R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

gnd −1 −1 −1 0 0 0 0 0 0 0 0 0

N1 0 0 0 1 1 1 0 0 0 0 0 0

N2 0 0 0 0 0 0 1 1 1 0 0 0

N3 1 0 0 −1 0 0 −1 0 0 1 1 0

N4 0 1 0 0 −1 0 0 −1 0 −1 0 1

N5 0 0 1 0 0 −1 0 0 −1 0 −1 −1



(3.7)

The direction of the current is always from the sources to the loads. For consistency,

for the connections between the loads, it is assumed that the current flows from the

nodes with a smaller index to the nodes with higher index (e.g. from N3 to N4 via R10

in the example in Figure 3.2). This assumption would not affect the final designed

circuit as the connections are optimized by the optimization algorithm. Hence, in the

final designed circuit there might be a connection with a current flow from a higher

indexed node to a lower indexed node. The details of the optimization process are

explained in Section 3.3.

The voltage vector of all the nodes, V, is defined as:

V =


0

Vs

Vb

 (3.8)

where Vs is the voltage vector of the source nodes and Vb is the voltage vector of the
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load nodes. The voltage at each node can be calculated as follows [46]:

Vb = Y −1
22 Ib − Y −1

22 Y21Vs (3.9)

where 
Is

Ib

 =


Y11 Y12

Y21 Y22




Vs

Vb

 (3.10)

Note that in these equations Ib = 0 because no current is injected in the load nodes,

as instead occurs for source nodes. The direction of the current in the source to

load connections are always from the source to the load as in Eq. 3.4. The direction

of the current in the load to load buses is not known a priori. Note that although

the direction changes the signs in Eq. 3.4, it does not affect the solution of the

optimization. The voltage at the nodes are calculated according to Eq. 3.9 and

Eq. 3.12, where A shows up in Ybus matrix. Since Ybus is a quadratic form of matrix

A (Eq. 3.2), the nodes voltages are disassociated to the sign of matrix A. In fact, the

correct direction of the currents will be determined after the voltage of each node is

calculated.
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3.3 Optimization

The resistance of each line is proportional to its length, defined as

Ri = ρLi/S (3.11)

where ρ is the electrical resistivity of the cable material, L is the length of the line,

and S is the cross-sectional area of the material. For simplicity, the optimization cost

function used in this chapter is defined as minimizing the resistance in the cables.

This equates to the objective function

J1 =
Nt∑
i=1

Li (3.12)

where Li is the length of the shortest ith line between two nodes if they are connected

and Nt is the total number of connections. Hence, the problem is equivalent to

minimizing the sum of total cable lengths subject to voltage constraints and the

voltage is calculated via Eq. 3.9. Keep in mind that the load lower and upper voltage

constraints force the optimizer to find solutions with connection lengths in a certain

range. The voltage drop in the cable increases as the cable length increases. Hence,

the constraints prevent the optimizer from finding solutions with connections that

are “too short” (upper limit constraint) or “too long” (lower limit constraint). From
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a practical aspect, the voltage constraint reflects a real word scenario where there

would be a voltage range requirement at the load that needs to be met. This choice

of objective function for the optimized source positioning is a simple first choice.

However, a designer may wish to include terms for load priority, source reliability or

source rated capability. These additional terms will be explored in future work. The

details of transforming the problem unknowns into variables and the solver algorithms

with the given objective function (Eq. 3.12) are presented in Sections 3.3.1 and 3.3.2

and four different example test cases are investigated in Sections 3.4.1-3.4.4.

3.3.1 Shortest Path Algorithm

To calculate the length of the wire between any two nodes on a grid field in the

presence of obstacles, a shortest distance algorithm is used. Obstacles are defined as

nodes that the path can not pass through. The algorithm chosen here for shortest

distance with obstacles is A∗ (A-star) [47]. This algorithm is an extension of Dijkstra’s

algorithm with two sets, fringe (open) and closed. The fringe set records the nodes

adjacent to those already evaluated and the closed set records the nodes already

evaluated. At the beginning, the fringe set only contains one node, the starting

point, and the closed set is empty. At each iteration of the algorithm, A∗ selects a

point of the fringe set to be the next node. To select that node, A∗ selects the path
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that minimizes

f(n) = g(n) + h(n) (3.13)

where g(n) is the cost (distance) of the path from the starting node to node n and

h(n) is the estimation of the cost from the node n to the goal node, where in this

application, the starting node is the location of the energy source and the goal node

is the desired load for it to energize. If two loads are connected, the start and goal

nodes would be these two nodes. Node n is the current node being evaluated and the

sequence of optimal n nodes forms the shortest path from the start to the goal node.

A common method which is selected in this implementation is to calculate h(n) as

the Euclidean distance from node n to the goal node. Note that the calculations of

the A∗ are repeated for each corresponding start and end goal until the shortest paths

for all the connections are found. The general A∗ algorithm procedure is shown in

Figure 3.3 and the details are as follows:

1. Select the node from the fringe (open) set with the lowest f-value. If there are

two or more nodes with the same f-value, select the node with the lower h-value.

2. If this newly selected node is the goal node, retrace the path to the start node

to find the shortest path from start to goal node.

3. If this newly selected node is not the goal node, evaluate its neighboring nodes
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and add them to the open set.

4. If one of the neighboring nodes has already been previously evaluated and the

current evaluation results in a lower f-value, then update it. When updating

nodes, record the parent node.

5. Add the selected node to the closed set and repeat this process.

3.3.2 Genetic Algorithm

The variables of the problem are the positions of the sources and the connections

between nodes. The Genetic Algorithms (GAs) are chosen as the base solver for

the problem. In GAs, the variables are simulated as genes and a set of variables

(a solution) is called a chromosome. A population consists of several chromosomes

that evolve via selection, crossover, and mutation operators through generations to

converge to a final solution. In the current problem, for Ns number of sources and

Nl number of loads, the total number of possible connections is

Nt = Nsl +Nll (3.14)
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Figure 3.3: Flow chart of A∗ algorithm.

where Nsl is the number of source to load connections and Nll is the number of load

to load connections as

Nsl = Ns ×Nl

Nll =


(
Ns +Nl

2

)
−
(
Ns

2

)
−Nsl, if Ns > 1(

Ns +Nl

2

)
−Nsl, otherwise

(3.15)
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The total number of variables is Ns +Nsl +Nll where the first Ns variables determine

the location of the sources and the rest of the variables determine whether a connec-

tion exist or not. The last Nsl +Nll genes are binary variables that can have values of

0 and 1. If a gene is 1, the corresponding connection is inactive (there is no connection

between the corresponding nodes) and if the gene is 0 the connection is active. In

some sense this is similar to hiding genes in Hidden Genes Genetic Algorithms (HG-

GAs) [48, 49, 50]. HGGAs were recently introduced to handle variable sized design

space problems via the introduction of tags for the genes [48]. In these algorithms, a

binary tag is assigned to the genes that can be hidden or active. If the tag is 1, the

corresponding gene is hidden and if it is 0, the gene is active. Two sample solutions

with one source and three loads are shown in Figures 3.4 and 3.5. The length of the

chromosomes for both solutions is the same, while they have a different number of

active variables. In Figure 3.4 solution, all connections are active (all the connection

genes have values of 0) and in Figure 3.5 solution, four connections are active (the

values of two connection genes are 1). Note that the first variable in both solutions

is the position of the source, which is always active.

The general optimization solution procedure is shown in Figure 2.2 in Chapter 2 and

the details are as follows

1. Read the first Ns values of the genes to get the position of the sources.

2. Read the rest of the genes to determine which connections are active. Calculate
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Figure 3.4: A solution with no hidden connections.

the shortest distance for the active connections based on the A∗ algorithm.

3. According to Eq. 3.11, the calculated distances are related to the resistances. If

a connection is hidden, set the equivalent resistance as infinity (Ri =∞). This

corresponds to the physical meaning that if there is no connection between two

nodes, there is no current between them.

4. Produce Matrix A according to Eq. 3.4.

5. Calculate Yy matrix in Eq. 3.3.

6. Calculate Ybus matrix in Eq. 3.2.

7. Solve Eq. 3.9 to calculate the voltage constraint.
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Figure 3.5: A solution with two hidden connections.

8. Calculate the objective value according to Eq. 3.12.

Note that in the simulations no duplicate location is allowed, i.e. only one source is

allowed to be placed at any location and also the obstacles positions are forbidden

for source allocation. The objective function evaluation will reflect poorly if this

constraint or any others such as voltage are not satisfied. For each solution found

by the algorithm, the voltage is checked via Eq. 3.9 and if it is not in the voltage

constraint range, the algorithm penalizes that solution by giving it high cost.
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3.3.3 GA Option Setup

The population size for all the cases is set to Npop = 10Ndv where Ndv is the number

of design variables in each case. The Elite count is set to floor(0.1 Npop) and the

number of generations and the stall generation for each case is shown in Table 3.1.

The function tolerance for stopping criteria is ftol = 10−5 and the crossover fraction

is 0.7 % in all the cases. The stall generations means that the algorithm will stop if

the average relative change in the best fitness value in Sg consecutive generations is

less than or equal to ftol. In all the test cases the load resistances are Rloadi = 10 Ω,

the source voltages are 60 V . The voltage at each load is constraint to be in the range

of [43.2 60] V . The resistance of the connecting wires are 3.28 Ω/km and the field

is 1 km × 1 km. In the first case, there are no obstacles in the field, but for other

cases, it is assumed that there are known obstacles. The variables of the problem are

the location of the sources and the connection between sources to loads and loads

to loads. If a connection between two nodes exist, the wiring length and path is

calculated based on the A∗ algorithm. The field is coordinated in grids of 101× 101

and the resistance of each connection wire is computed as 3.28 Ω/km× d where d is

the distance of the wire in kilometers.
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Table 3.1
Genetic algorithm options for different cases.

Case Number of Generations Stall Generation Limit (Sg)
1 50 20
2 100 50
3 100 50
4 200 50

3.4 Test Cases

Four different test cases are investigated in this section. The complexity of the prob-

lems increase in each case by adding obstacles and increasing the number/position

of the loads. Each load represents a center in need of voltage/power in an affected

area in actual natural disaster situations. The obstacles represent the debris, closed

roads, or any other inaccessible areas as a result of a disaster zone. The examples

shown here represent the optimal layout plan for a given case. Once the positions are

chosen through this method, the autonomous robots would need to maneuver from

their starting positions to connect the cabling and park in the designated optimal

position before the system can be energized, which is outside of the scope of this

work, but can be found in [44].
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3.4.1 Case A: One Source, Four Loads, No Obstacles

The first case is a simple example to investigate whether the algorithm produces the

feasible solutions. Assume that in a field with no obstacles there are four loads to be

supplied and only one source is available. The field is square, and each load is at a

corner. The number of design variables in this case is 11. These variables include the

location of source (1 variable), the connection between the source and the loads (4

variables), connection between load 1 to loads 2, 3, and 4 (3 variables), connection

between load 2 to loads 3 and 4 (2 variables), and connection between load 3 to

load 4 (1 variable). The lower bound for the first variable is 1 and the upper bound

is 101 × 101. All other variables can have values of 0 or 1 where 0 indicates the

corresponding connection is active and 1 indicates the corresponding connection is

inactive.

The problem is solved, and the solution is as Figure 3.6. The source is located at

the center and is connected to all the load while all the load to load connections are

inactive. This result was expected as we know that this grid produced the least total

length of the wires while satisfying the constraints. The voltage and power found for

each load is given in Table 3.2.
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Table 3.2
Bus voltage and load power solutions for Case A.

Load Voltage (Vdc) Power (W )

1 48.7950 238.0950
2 48.7950 238.0950
3 48.7950 238.0950
4 48.7950 238.0950

Figure 3.6: Configuration solution of Case A.

3.4.2 Case B, Two Sources, Four Loads, With Obstacles

For a more complicated case, assume that there are obstacles in the field. There

are two sources to be placed and connected and four loads which are placed one on

each corner of the field. There are a total of 16 design variables for this case. The
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solution to this problem shown in Figure 3.7. The first source is located next to the

second load and the second source is connected to the first, third, and fourth loads.

There is no connection between the loads themselves. In this example, the algorithm

managed to find the line-of-sight for the second source to the first, third, and fourth

loads. This is a valuable aspect of the algorithm in evaluating its performance in

finding the connections with the shortest lengths. The voltage and power found for

each load is given in Table 3.3.

Table 3.3
Bus voltage and load power solutions for Case B.

Load Voltage (Vdc) Power (W )

1 48.4806 235.0369
2 59.8058 357.6731
3 52.8181 278.9756
4 47.6522 227.0734

Figure 3.7: Configuration solution of Case B.
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3.4.3 Case C: Two Sources, Five Loads, With Obstacles

In this case, there are 5 loads and 2 sources. The source voltage, load resistances, and

load voltage constraint is similar to previous cases. The number of design variables is

22 for this case. The results of the simulation are shown in Figure 3.8 and the voltage

and power at each load is given in Table 3.4

Table 3.4
Bus voltage and load power solutions for Case C.

Load Voltage (Vdc) Power (W )

1 58.380 340.82
2 50.904 259.13
3 59.806 357.67
4 46.267 214.07
5 51.019 260.29

3.4.4 Case D: Three Sources, Ten Loads, With Obstacles

For a more complicated problem, there are 10 loads and 3 sources which results in 78

design variables. The results are shown in Figure 3.9 and the voltage and power at

each load is given in Table 3.5.
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Figure 3.8: Configuration solution of Case C.

Table 3.5
Bus voltage and load power solutions for Case D.

Load Voltage (Vdc) Power (W )

1 54.4631 296.6228
2 56.9498 324.3279
3 53.9759 291.3395
4 54.4499 296.4793
5 59.5674 354.8280
6 49.3561 243.6025
7 54.3362 295.2417
8 54.7357 299.5993
9 59.6299 355.5724
10 52.5618 276.2744
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Figure 3.9: Configuration solution of Case D.

3.5 Discussion

In this section, more investigations are done on the optimization algorithm setup,

including constraint and objective function. The effects of voltage constraints adjust-

ments on the solutions of Section 3.4 are investigated. Moreover, alternative objective

functions are investigated to examine the effectiveness of the proposed algorithm.
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3.5.1 Voltage Constraint Adjustment

To investigate the effects of load voltage constraints on the structure solution, an

example test case is presented here. The simulations are repeated by decreasing the

upper limit on the voltage constraint from 60 V (GA setup 1) to 52.8 V (GA setup 2),

while all the other parameters and variables of GA remain the same. The objective

function values of all the test cases in both setups are presented in Table 3.6. Note

that these objective function values represent the total length of the line connections

and are in meters (Eq. 3.12).

Table 3.6
Comparison of the cost function values J1 for the two GA setups.

GA setup 1 GA setup 2

Case A 2828.4 2828.4
Case B 1958.3 2000
Case C 1246.1 2133
Case D 2188.8 3955.28

The results of Case A are the same in both setups. However, for the other three cases,

there is an increase in the connection lengths in GA setup 2 compared to GA setup 1.

As an example, Figure 3.10 shows the circuit configuration of Case D in GA setup 2.

The “long” connections of this solution compared to Figure 3.9 is noticeable. In GA

setup 2, the source voltages are 60 V while the upper limit on the voltage constraint

of the loads are 52.8 V . On the other hand, the voltage drop from the source to

the load increases by increasing the cable length. The constraint implies that the
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Figure 3.10: Configuration solution of Case D with maximum load voltage
constraint of 52.8 V .

source’s voltage would be greater than the load’s voltage for any possible connection,

which causes a minimal distance to be maintained between the source and the load

to drop the necessary voltage down to meet the constraint. The results show that by

adjusting the optimization parameters and constraints, designers can achieve circuits

that satisfy their goals better.
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3.5.2 Alternative Objective Functions

Two more objective functions are investigated to study the effectiveness of the algo-

rithm. The second objective function is defined as:

J2 =
Nt∑
i=1

Li − 10

Nl∑
j=1

Pj (3.16)

where Pj is the power at the jth load in watts and is calculated as follows:

Pj = V 2
bj
/Rj (3.17)

where Rj is the constant resistance of the jth load (connected to ground). With this

objective function, the algorithm tries to minimize the total connection length while

maximizing the total power at the loads. The weight of 10 implies that the total

power has a higher priority compared to cable length. The third objective function

is defined as:

J3 =
Nt∑
i=1

Li +max( ~Dr) (3.18)

where ~Dr is the vector of traveled distance of robots (sources) from their deployment

point to their optimal location. It is assumed that all the robots are initially at

(x, y) = (500, 20) m in the field and they are deployed at the same time. Assuming

the robots have similar and constant velocities, this objective function will minimize
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the connection lengths while minimizing the maximum time it takes for the robots

to be at their operational (optimum) location. The sooner the robots are at their

optimal locations, the sooner the power restoration operations start, which is very

important in post-disaster missions. The results of the three objective functions are

shown in Table 3.7 for Cases C and D. The lengths are in meter and the power is in

watts.

Table 3.7
Comparison of the results for J1, J2, and J3 objective functions for Cases C

and D.

Case Objective Function
∑Nt

i=1 Li

∑Nl

j=1 Pj max( ~Dr)

C
J1 1246.1 1432.0 701.0
J2 1767.7 1590.0 1024.4
J3 1512.2 1507.7 430.8

D
J1 2188.8 3033.9 851.7
J2 3029.6 3109.4 683.1
J3 2545.0 2631.6 732.3

Comparing J1 and J2, it is observed that the total cable length and the total power

at the loads is higher for J2. This is due to the added power term with a weight of

10 in Eq. 3.16 compared to Eq. 3.12. Moreover, analyzing the result of J3 and J1

shows that the algorithm was able to find a solution with less travel distance for the

sources by compromising the total cable length. Comparing the results of J2 and J3

shows that the total power at the loads in both Case C and D is larger for J2, with

an added cost of cable length. J3 shows solutions with lower total cable lengths plus

max source travel distance. Note that for Case C, J3 results in the lowest max source

travel cost but not for Case D. This is due to J3 viewing the cable length and max
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source travel distance as equally weighted costs. J3 finds a lower overall cost in Case

D by allowing the max source travel distance to be larger, as compared to J2, to find

a lower cable distance cost. The results of Cases C and D with J2 and J3 objective

functions are shown in Figures 3.11-3.14.

J1, J2, and J3 can be formulated in a single objective function as:

J4 = w1

Nt∑
i=1

Li + w2

Nl∑
j=1

Pj + w3max( ~Dr) (3.19)

where ~w = [w1 w2 w3] are the weight coefficients of total cable length, total power at

the loads, and the sources’ travel distance, respectively. J1 is represented by the first

of the three terms and can be represented with ~w = [1 0 0]. J2 is represented in the

first two terms, with ~w = [1 − 10 0]. J3 is represented by the first and third terms

with ~w = [1 0 1]. By adjusting these weight coefficients, the designers can set up

the best objective function based on their requirements and priorities. The examples

provided here are just a demonstration of the performance and effectiveness of the

proposed algorithm.
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Figure 3.11: Configuration solution of Case C- J2.

3.6 Conclusion

In this chapter, a general framework and solution methodology was presented to op-

timally position energy sources within a field with loads and obstacles. In addition,

the interconnection between the sources and loads were optimized to achieve the most

efficient operation within a given set of constraints. In the proposed algorithm, no

prior knowledge about the location of the sources or the connections structure is

needed. The results of the example test cases show valid and reasonable results, how-

ever, further refinement can be added to include load priority, source reliability, etc.

In addition, the general framework for the problem including the system modeling,
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Figure 3.12: Configuration solution of Case C- J3.

objective functions, constraints, and genetic algorithm solution can also be extended

from the DC distribution used in this work to include AC and hybrid AC/DC system

as well.

In the next chapter, the concept of a sub-microgrid system consisting of a UGV

traversing to and transferring power wirelessly to distributed loads is presented. A

system simulator is developed in which several algorithms to control the charging

of the loads with a UGV are applied. The algorithms are evaluated based on costs

associated with load operation and UGV traversal time. The results demonstrate the

robustness of the system simulator, as well as the advantages and disadvantages of

the algorithms presented.
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Figure 3.13: Configuration solution of Case D- J2.

Figure 3.14: Configuration solution of Case D- J3.
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Chapter 4

Recharging of Distributed Loads

via Schedule Optimization with

Autonomous Mobile Energy Assets

4.1 Introduction

The development 1 and utilization of autonomous mobile agents has substantially in-

creased over the past decade. This has driven a better understanding of performance

in these systems to increase their utility. One relatively new application for the use

1The material in this chapter is reprinted in majority from [3]
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of these autonomous mobile robots is in microgrid systems [51], [52]. These mobile

microgrids use distributed energy resource robots such as photo-voltaic (PV) arrays

with energy storage, diesel generators, and controllable power electronics. Three such

mobile resources are shown in Figure 1.1 from Chapter 1. A mobile microgrid system

can adapt to changes in the environment to optimize its applicability, depending on

load demand. The agents can connect and work together to power other systems such

as a communication tower for example, shown in Figure 1.2 from Chapter 1. This

application of collaborative mobile energy resources exploited for microgrids can be

extended to a myriad of unique missions. This includes the use of these unmanned

ground vehicles (UGVs) in recharging other distributed resources such as wireless sen-

sor networks (WSN) [53] or unmanned aerial vehicles (UAVs) to extend their mission

life in operations such as planetary data collection, surveillance, or reconnaissance.

Along with properly developing these UGVs for missions, a better understanding of

how the agents should collaborate to fulfill a mission with limited resources needs

to be considered. This chapter proposes a method to optimally allocate resources

for mission fulfillment. Specifically, this chapter investigates how resources should

be allocated to sustain the operational life of distributed loads, which could repre-

sent WSN, UAVs, etc. To explore this concept, a system simulator in MATLAB® is

developed to model the distributed loads, agent routing, and recharging systems.

As discussed in Chapter 3, autonomous mobile energy assets are used to form an adap-

tive and temporary microgrid system to power critical loads for power restoration.
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A genetic algorithm (GA) optimization method is used in several cases to determine

optimal positioning of mobile sources to minimize objective functions, which enhance

the utility of the resources. In [54], UAVs are utilized to recharge WSN, with a focus

on the optimization of dedicated sinks in the network to maximize network life. In

[55], the concept of utilizing many rechargeable UAVs as nodes in a WSN is explored,

along with a proposed wireless recharging technology architecture. In [56], distributed

and adaptive methods to traverse and wirelessly replenish the energy of WSNs are

discussed.

Contrary to the referenced previous related work, this chapter focuses on the utiliza-

tion of specific hardware used in practice for modeling, simulating, and testing the

algorithms used for recharging distributed loads. The contribution to this chapter is a

method to model and optimize scheduling algorithms for recharging distributed bat-

tery systems using MATLAB/Simulink. Real data from testing a Clearpath Husky

UGV in the same mission scenario as presented is used for Monte Carlo (MC) simu-

lation [57] to statistically analyze risk involved in the proposed algorithms.

The remainder of this chapter is organized as follows. The system modeling is ex-

plained in Section 4.2. In Section 4.3, several scheduling algorithms are proposed

which are implemented in simulation case studies in Section 4.4. The hardware archi-

tecture that the case studies are based on is explained in Section 4.5. This hardware
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is utilized for data collection in MC simulation analysis shown in Section 4.6. Sec-

tion 4.7 compares the outcomes of the case studies and discusses variability in the

MC simulations. Conclusions and future work are then presented in Section 4.8.

4.2 System Modeling

Consider Ns number of energy sources and Nl number of loads. The sources represent

the mobile robots in Figures 1.1 and 1.2 from Chapter 1 and the loads represent dis-

tributed critical loads that need to be recharged periodically to maintain their utility.

The loads could be systems such as wireless sensor networks, heating/cooling sys-

tems, or UAVs for example. The problem to be solved is to determine the sequence

of individual wireless recharging of the loads that optimizes a desired objective func-

tion and satisfies constraints. This combinatorial optimization problem is generally

computationally difficult. [56] formulates a similar charger optimization problem and

notes that it is NP -complete [58], as is the traveling salesman problem. The objective

function can include mobile robot traversal time, energy usage, down-time of loads,

etc., and constraints applied can include maintaining a minimum state of charge in

loads. Without the loss of generality, and to mimic the hardware utilized in practice,

the recharging energy source is modeled as a constant DC voltage source, and the

loads are modeled as generic rechargeable batteries. Each battery is connected to

their own resistive load, modeled as resistors. The number of sources and loads are
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assumed to be known and constant, with the location of the loads assumed to be

known and fixed.

The system dynamics and operations in conducting this load recharging mission with

a UGV is modeled in MATLAB/Simulink. This system includes the loads, which are

modeled as independent rechargeable batteries, dispersed in an operating field. Time

characteristics associated with the UGV traversing from load to load and docking

to wirelessly recharge these individual loads are modeled with system time delays.

Figure 4.1 shows an example of the problem with a single source and three loads.

The example shows the trajectories of a UGV to the loads (L) to charge them in the

sequence {L2, L3, L1, L3},where the charge time (t) spent at each of these respective

loads is {t, 2t, 3t, t}. In this example, obstacles are omitted to help simplify the prob-

lem. In a real world mission, this scenario could represent distributed sensors in data

collection/monitoring systems as part of a lunar or planetary exploration mission.

The loads represent the distributed sensors and the routes represent the paths tra-

versed by the mobile ground rovers, equipped with photo-voltaic (PV) arrays and/or

energy storage systems. The rover can move around the operational area to recharge

the loads and since the loads are constantly using power to serve their purpose in

continuously gathering and transmitting data/intelligence, they will eventually run

out of energy. The rover needs to determine which loads to recharge, at what time,

in what sequence, and for how long over some known time span, T . Proper mission

operations are paramount to optimize the use of resources such as sensor battery
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lifespan or rover traversal energy usage by investigating different mission outcomes

in simulation. The approach to modeling the sub-systems involved in the scheduling

algorithms are discussed next.

Figure 4.1: Example solution to distributed optimal load recharging sched-
ule.

4.2.1 Rechargeable Battery Systems

The dispersed rechargeable battery systems are modeled using the Simulink-

SimscapeTM generic dynamic rechargeable battery model found in the Simulink li-

brary under Simscape / Electrical / Specialized Power Systems / Electric Drives /

Extra Sources, which is derived in [59]. The parameters in the model reflecting the

circuitry in the batteries are adjustable by the user to attain specific battery dynamics

[60]. A desired battery discharge profile for this work, consisting of the exponential,
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nominal, and maximum discharge zones, can be seen in Figure 4.2. This is done by

inputting the battery parameters given from a manufacturer of a similar battery used

in this work, and is described in Section 4.5.1, into the battery model.

Figure 4.2: Discharge profile for simulated 9.6 V , 2000 mAh rechargeable
NiMH batteries at 0.2 C.

4.2.2 Time Dependencies

Through the use of Stateflow®, a control logic tool available in MATLAB/Simulink,

the time dependencies occurring in the battery dynamics from discharging and charg-

ing, and time attributed to the robot traversal and docking can be accounted for and

considered when determining which load to recharge at what time. This is done with

time delays in the simulation to represent an average time to fulfill these processes.

The battery systems respond to these time instances as they would in a real system,
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with self discharge, voltage dynamics, and updated state of charge (SOC) values due

to this discharging and recharging.

The general procedure for the model progression is as follows. When the simulation

is initiated, the battery load systems are switched on and feedback of the SOC from

all batteries are input to the Stateflow logic controller. This SOC feedback along

with the current location of the mobile energy source are used in the controller for

determining which load to recharge at the current time and for how long. Once a

decision is made, the UGV is committed to that operation for some time period,

depending on the algorithm used and the states of the system. Once some criteria

such as battery SOC or charge time is met, the charging decision process repeats,

resulting in the next decision of which load to recharge in the sequence. To prevent

battery fatigue in the loads, maintain battery efficiency overtime, and ensure some

factor of safety if the UGV fails, if a battery SOC falls below some threshold defined

by the user, it is disconnected from its respective load and enters load down-time.

The general procedure for the model progression is shown in Figure 4.3.

4.3 Scheduling Algorithms

The problem to be solved, as stated in Section 4.2, can be viewed as a variation of

the Job-Shop Scheduling Problem (JSP) [21] where the jobs are the entire process
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Figure 4.3: Overview of Simulink/Stateflow control model flow diagram
for algorithm development and testing of a-priori mission plans.

of traversing to, docking, and recharging individual loads and the machines are the

UGVs. This is a variation of the JSP due to a loose classification of when a job

should begin, how long it takes to complete, and the cyclic nature of the recharging

jobs themselves. Depending on the algorithm used, the load may be allowed to be

partially recharged to give the UGVs more flexibility in which load to recharge and

for how long. This gives the UGVs the opportunity to leave the load it is recharging

to make it to another load before that load runs out of energy or has to shut down

to preserve power. This gives rise to the criteria used in the proposed scheduling

algorithms.

In the case studies and hardware architecture discussed in Sections 4.4 and 4.5, re-

spectively, a single UGV resource is utilized, therefore, the problem can be reduced

to a Single-Machine Scheduling (SMS) [24] problem. This SMS problem is prominent
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in CPU scheduling in computer operating systems. First Come, First Serve (FCFS)

and Round-Robin (RR) [20] are two popular algorithms used and discussed in CPU

scheduling which our case studies are based on. These algorithms are chosen because

of the reactive nature of them and the low computational complexity in applying

them to real hardware. These algorithms are described next, along with a flexible

genetic algorithm (GA) approach, capable of optimizing an objective function.

Scheduling algorithms can be described as either preemptive or non-preemptive. Pre-

emptive schedules allow for interrupting jobs to be continued or finished at a later

time. Non-preemptive schedules require processing of the job until it is complete.

Within the context of the mission described in this work, completing a job is anal-

ogous to traversing to the load and completely recharging it to 100%. However, as

mentioned in Section 4.2, if a load reaches some minimal SOC defined by the opera-

tor, the battery enters down-time. Load down-time is when a load SOC has reached

some minimum value, defined by the operator, and that load should shut down to

prevent extensive discharge to preserve the life cycle of the battery. The down-time

of the ith load is calculated by

tdowni
=

Nd∑
j=1

∫ bj

aj

dt (4.1)

where

aj = SOCi < SOCmin (4.2)
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bj = SOCi > SOCmin, aj ε. (4.3)

Nd is the number of down-time occurrences, aj and bj are the jth down-time occur-

rence start and end times, respectively. SOCi is the SOC of the ith load and SOCmin

is a minimum SOC desired to be maintained in a mission.

Depending on the method used, a job could be queued when it reaches some minimal

SOC defined by the operator or the jobs could always be queued but prioritized to

prevent down-time of specific loads. As applied to our jobs, preemption refers to a

UGV leaving a load before it is fully charged. Taking all the above into consideration,

the objective function applied in all case studies to evaluate the algorithms is defined

as

J =

Nl∑
i=1

tdowni
+ ttravel (4.4)

where ttravel is the total time spend traveling between loads and is calculated as

the simulation time window, T , minus the total time spent charging all loads. The

scheduling algorithms investigated in this chapter are discussed next.

4.3.1 First Come, First Serve

In the FCFS algorithm, jobs are sorted by the order in which they are queued. In

this scenario, this is considered analogous to sorting by load SOC. When determining
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which load to go charge, all load SOC are compared and the load with the lowest

SOC is chosen. This process is repeated after the previously selected load has been

fully recharged. The logic used in this algorithm is

Licharge = min(SOC1, SOC2, SOC3, ...SOCNl
) (4.5)

for

SOCicharge < 100% (4.6)

where Licharge and SOCicharge are the ith load to go recharge and that ith load’s SOC,

respectively. The function in equation 4.5 identifies the load with the lowest SOC and

equation 4.6 is the condition to maintain that load as the load to charge. Within the

context of this work, this method is referred to as the FCFS-1 method. This method

is considered non-preemptive because the mobile source is not allowed to leave a

load until it has reached full charge or an appropriate SOC desired and defined by

SOCicharge . A benefit of this FCFS inspired method is that it inherently prioritizes

the load with the lowest SOC and acts to prevent load down-time. Another benefit is

that it does not need an a-priori mission plan to be executed in a real-time system. It

is a reactive algorithm which makes decisions in real-time, responding to unforeseen

mission dynamics likely to occur in a real system. A disadvantage is that the mobile

source cannot leave the current load it is charging before it reaches full charge, which

could cause another load to reach down-time. A potential solution to this problem
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is to prioritize a specific load and allow the mobile source to leave a load before it is

fully charged to prevent the prioritized load from incurring down-time. The algorithm

logic utilized with this alternative condition is the same as in equation 4.5 but has a

different condition than equation 4.6, which is

SOCicharge < 100% || tpriority <= ttraversal (4.7)

where tpriority is the time before the prioritized load will reach down-time and ttraversal

is the time it takes for the load to reach the prioritized load from its current location.

This tpriority value can be calculated by assuming the loads are discharged at a constant

rate. Within the context of this chapter, this modified FCFS based method is referred

to as the FCFS-2 method.

4.3.2 Genetic Algorithm Optimized Round-Robin

In the Round Robin (RR) algorithm, each job is given the same amount of time to

be processed. After the time dedicated to that specific job has passed, the next job

in the queue is processed, and the previous job moves to the tail end of the queue

and the algorithm continues in this cycle. For our mission scenario, this is considered

similar to dedicating the same amount of recharge time to each load and repeating

this charging on the loads in a cycle. A benefit of this RR based method is that the
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loads are treated equally and preemption is possible if the assigned charge time is

short enough. A disadvantage is that if the assigned charge time is too short, the

mobile source may spend too much time traversing from load to load throughout

the mission, which may be inefficient. The logic used in determining the ith load to

charge in this algorithm is

Licharge = {L1, L2, L3, ...LNl
, L1, L2, L3, ...LNl

, ...} (4.8)

which is the sequence order of loads to go charge. Switching between loads occurs

when the current load in the sequence receives

ticharge = tRR (4.9)

where ticharge is the time spend charging each load and tRR is the RR charge time.

A genetic algorithm is used to determine this single optimal RR charge time. Equa-

tion 4.8 shows a sequence of increasing load identification number when the sequence

could be in any order as long as each load is charged once and exactly once per cycle

and this cycle is repeated.
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4.3.3 Genetic Algorithm Optimized Flexible Round-Robin

As described in Chapter 2, GAs utilize the concept of genes in a chromosome which

evolve progressively. As a global population based optimization algorithm, it is made

up of a population of chromosomes, which represent different solutions in the solution

space. Each chromosome is made up of genes which represent the design variables.

The chromosomes go through the processes of selection, crossover, and mutation to

explore the solution space and find the optimal solution. Every time the population

evolves through these processes a new population is generated and the next generation

is created, which is the start to the next iteration in the optimization computation.

This iterative process continues until some stopping criteria is met. Generally, an

initial random population is used to begin the optimization, but there are options to

supplement in solutions which may be known to the user to be good. More details

on GAs can be found in Section 2.4.

In applying the GA approach, the design variables are a sequence of integers rep-

resentative of the time spent charging each load. Similar to the RR method, a

cyclic load charging scheme is applied but flexibility is given in the charge time for

each load charging occurrence. As an example, for Figure 4.1, if the cycle sequence

is {L2, L3, L1, ...}, then the GA solution for the first two cycles is represented as

{t, 2t, 3t, 0t, t, 0t}. This algorithm has the same sequence of loads to go charge and is
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represented in Equation 4.8 but the charging condition is represented as

ticharge = tRRi
(4.10)

where ticharge is the time spend charging each load and tRRi
is a set of N RR charge

times. The GA is used to determine this optimal set of N RR charge times which

is dependent on the number of load-to-load traversals in the 24 hour time window,

which ultimately depends on the charging time lengths in N . This causes the problem

have a variable-sized design space.

4.4 Simulation Case Studies

There are several simulation case studies presented in this section, reflecting the

methods described in Section 4.3. All cases employ a single mobile energy asset and

three distributed loads. The simulation time window, T , is over a twenty-four-hour

period and infinite energy capacity is considered for the mobile source, considering

that multiple UGVs in theory could work one at a time, in shifts to accomplish

this mission. The distributed loads are assumed to be equidistant from each other

with initial deployment of the mobile source in the center of the loads, as shown

in Figure 4.1. The time considered for the mobile source to travel from the initial

deployment location to any of the loads, and from any load to a different load is 35 and
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60 seconds, respectively. All loads begin the mission relatively close to 100% SOC.

Slight deviations between the initial load SOCs are implemented to reflect real world

hardware. Slightly different resistive loads are applied to each load and a constant

12 V source is used in charging the loads. These load parameters can be see in

Table 4.1. For all case studies, the minimum SOC to be maintained to prevent down-

time is 50%. The loads and charging system modeled in these case studies are based

on the hardware described next in Section 4.5. The rechargeable batteries are 9.6 V ,

2000 mAh rechargeable batteries, and the wireless power transfer (WPT) modules

produce 12 V . The parameters chosen in the battery models are selected to replicate

the discharge profile given in the specification data sheet of a similar battery type

battery. The Simulink and actual battery discharge profiles are shown in Figures 4.2

and 4.4.

Figure 4.4: Discharge profile for 9.6 V , 2000 mAh rechargeable NiMH
batteries from Tenergy manufacturer [1].
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Table 4.1
Load parameters for all simulation case studies.

Load Initial SOC (%) Load Charge
Resistance (Ohms) Voltage (Vdc)

1 99.7 28 12
2 99.5 28.5 12
3 99.3 29 12

4.4.1 Case A: First Come, First Serve Based Methods

In this first simulation the FCFS-1 based method is applied and the SOC of the

batteries over time in the 24 hour mission time can be seen in Figure 4.5. The

down-time for each load and the total traversal time is given in Table 4.2.

Figure 4.5: SOC for all loads in Case A-1 with the load down-time shown
and annotated for Load 2.

From this simulation result, it is noted that this simple method cannot provide enough

power over the 24 hour mission time to prevent down-time of any load. This is not a
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Table 4.2
Individual load down-time and UGV travel time results for Case A-1.

L1 L2 L3 Travel
Down-time Down-time Down-time Time

(min) (min) (min) (min)

122.2 117.2 189.1 49.4

desired mission result so the previous FCFS-1 method can be modified to prioritize

a specific load to prevent this down-time, as described in equations 4.5 and 4.7 as

the FCFS-2 method. In Case A-2, Load1 is prioritized and the SOC of the batteries

throughout the mission time can be seen in Figure 4.6. The down-time for each load

as well as the total traversal time is given in Table 4.3.

Figure 4.6: SOC for all loads in Case A-2.

Table 4.3
Individual load down-time and UGV travel time results for Case A-2.

L1 L2 L3 Travel
Down-time Down-time Down-time Time

(min) (min) (min) (min)

0 216.2 197.1 49.4
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4.4.2 Case B: Round Robin Based Method with GA Opti-

mized Charging Time

The GA approach, as explained in Section 4.3, can be applied in this RR inspired

algorithm for determining an optimal charge time, applied to each load in a cyclic

operation. An optimal cyclical charge time is found to minimize the objective function

defined in equation 4.4. This objective function attempts to minimize down-time of

all the loads and the time spent traveling between loads over the course of the 24

hour simulation time window. The cyclic charging procedure follows in the order of

{L1, L2, L3, ...}. This cycle is repeated for the entire mission. The upper and lower

bounds for the tRR design variable is 2 hours and 20 minutes, respectively. The GA

optimizer is able to find an optimal tRR of 1760 seconds or 29.3 minutes, resulting

in an objective function cost of 48.4 minutes. The SOC of the batteries over time in

applying this mission plan are shown in Figure 4.7. The down-time for each load and

the total traversal time is given in Table 4.4.

Table 4.4
Individual load down-time and UGV travel time results for Case B.

L1 L2 L3 Travel
Down-time Down-time Down-time Time

(min) (min) (min) (min)

0 0 0 48.4
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Figure 4.7: SOC for all loads in Case B.

4.4.3 Case C: Flexible Round Robin Based Method with GA

Optimized Charging Times

This flexible RR based scheduling algorithm is similar to the RR based algorithm

in that there is a designated cycle in load charging, however the time in charging

each load can vary throughout the entire mission. When a load is charged, the

gene charge time, t, as explained in Section 4.2, is set to a possible lower bound

of 10 minutes, and upper bound of 2 hours. With a mission time window of 24

hours and neglecting travel time, this equates to a maximum of 144 design vari-

ables that may need to be optimized. The number of design variables utilized in

the simulation is dependent on the number of times the mobile source transitions

loads to charge. As more transitions occur, more time is dedicated to traversing
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and not charging, so not all design variables may be utilized. Any variables not uti-

lized within the simulation time window are neglected. The optimal solution from

Case B is seeded into the GA initial population in this case. The same objective

function as shown in equation 4.4 is applied to this optimization method. The GA

optimizer is able find an optimal set of 45 recharge times, resulting in an objective

function cost of 45.35 minutes. The distributed loads’ battery SOCs over time can

be seen in Figure 4.8. The results of the cost components of this objective function

are shown in Table 4.5. The respective 45 optimized charge times in minutes are

{30.1, 28.52, 34.25, 29.57, 28.8, 29.45, 30.7, 44.15, 29.17, 30.08, 31.57, 24.03, 36.9, 28.68,

28.02, 30.83, 30.27, 33.57, 29.58, 27.33, 31.18, 28.75, 40.78, 29.65, 40.73, 30.57, 29.27,

31.93, 31.05, 28.97, 28.6, 31.1, 28.32, 28.85, 27.67, 43.08, 35.57, 29.13, 29.43, 30.2, 29.82,

30.38, 31.08, 29.25, 27.53}.

Figure 4.8: SOC for all loads in Case C.
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Table 4.5
Individual load down-time and UGV travel time results for Case C.

L1 L2 L3 Travel
Down-time Down-time Down-time Time

(min) (min) (min) (min)

0 0 0 45.35

4.5 Hardware Architecture

The simulation studies presented in Section 4.4 are based on hardware being developed

to implement this distributed load recharge mission. This hardware consists of a

Clearpath Husky A200 UGV, 9.6 V , 2000 mAh rechargeable batteries, and a wireless

inductive charging system capable of recharging these batteries. These three central

systems are briefly discussed next.

4.5.1 Rechargeable Battery Loads

The rechargeable batteries used are 9.6 V , 2000 mAh, nickle metal hydride (NiMH).

These battery packs contain 8 AA type 1.2 V cells. Discharge specifications for these

batteries used could not be obtained but specifications for a similar Tenergy brand

pack with the same nominal voltage and energy capacity were found and is shown

in Figure 4.4. This battery was chosen because of its simplicity in that there is no
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charging control in the battery system and it is rated for the max current and voltage

input that the wireless inductive charging system produces.

4.5.2 Wireless Power Transfer

The near-field wireless power transmission works on the principle of inductive cou-

pling. In the charge coupling setup, there are two separate modules, one transmitting

module and one receiving module. The transmitting module is located on the front of

the Husky UGV and the receiving module is located on the stationary load as shown

in Figure 4.9. These modules have no physical connection between them. Power is

transferred due to the magnetic flux from the transmitting module inducing an alter-

nating current on the receiving module coil. The transmitting modules rated input

capacity is 24 V and 1 A DC. The receiving modules rated output capacity is 12 V ,

2 A DC and is connected to the 9.6 V battery for charging. Data was collected in

recharging this battery with the WPT system and the current supplied to it can be

seen in Figure 4.10. From this data, the net current from the battery can be inte-

grated over time to estimate the battery SOC, known as coulomb counting. This is

shown in Figure 4.11.
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Figure 4.9: Clearpath Husky UGV with transmitting module in close prox-
imity to load receiving module for wireless docking to recharge a distributed
load.

Figure 4.10: Current supplied to 9.6 V , 2000 mAh, NiMH rechargeable
battery during wireless charging testing.
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Figure 4.11: Energy capacity of 9.6 V , 2000 mAh, NiMH rechargeable
battery during wireless charging testing, using coulomb counting.

4.5.3 Husky UGV

The mobile UGV incorporated in this mission application is a Clearpath Husky A200.

For localization and navigational purposes, the UGV is equipped with a SICK two-

dimensional LiDAR, a NovAtel GNSS Antenna, a LORD Micro Strain Attitude Head-

ing Reference System (AHRS), and a Sony PlayStation Eye camera. The transmitting

module in the WPT system is mounted at the front of the UGV. Figure 4.9 shows

the UGV docked at one of the distributed loads for wireless recharging. This UGV

in particular is fitted with a Honda EU1000i gas generator and a switching power

supply to offer on-board battery recharging to extend its mission time and for power

transfer to the distributed loads.
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4.6 Monte Carlo Simulation Analysis

The Round-Robin algorithms presented in Section 4.4 provide a-priori schedules to

fulfill the recharge mission. In simulation, all methods assumed exact parameters

such as mobile source travel time from deployment and between loads. These a-

priori schedules applied on hardware would more accurately follow the outputs of the

simulations if the model exactly represented the hardware and physical system pa-

rameters. However, because of variability apparent in hardware and not yet modeled

in simulation, errors in time delays may accumulate, resulting in the hardware and

the schedules becoming inaccurate. To better analyze and understand these probable

outcomes in applying these a-priori and reactive scheduling algorithms on hardware,

MC simulations can be carried out with the use of statistical data measured in the

real system to better understand the potential outcomes.

Using the hardware as described in Section 4.5, the mission scenario simulated in

the case studies and shown in Figure 4.1 is replicated for hardware testing and can

be seen in Figure 4.13. It is assumed that the loads are equidistant based on this

hardware setup and traversal between any two loads is relatively equivalent. The

testing procedure and process is carried out as follows. Starting from the location and

pose as shown in Figure 4.13, the UGV randomly selects between the three loads to

traverse to, and dock for wireless recharging. Once a load is chosen, the UGV achieves
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a load corresponding way-point and angular pose. The UGV then pans by rotating

in place to identify the load chosen via augmented reality tag (ART) identification.

Once acquired, the UGV traverses to and docks on the load for wireless charging. A

sample of 10 measurements of the Husky UGV traversing to and wirelessly docking

on loads are logged to understand and model the time variability associated with

the different processes. The individual processes involved to move from one load to

another are categorized as TAR and Tmobile. TAR is the time attributed to acquiring

the next AR tag and Tmobile is the sum of time attributed to traversing from a load

to the next way-point and from that way-point to docking on the load.

The TAR process begins when the UGV finishes traversing to its corresponding load

way-point and achieves the commanded pose with respect to the load. From here,

the UGV then pans to acquire the ART. It always initially pans counter-clockwise to

approximately 90 degrees then back to its initial pose then clockwise approximately

90 degrees before returning back to its original pose again. This process is repeated

until the ART is acquired. For modeling purposes, the TAR process is considered a

function of two random variables, the initial pose achieved by the UGV with respect

to the load it is acquiring, and the amount of times the UGV misses acquiring the

load ART. The initial pose is modeled as a Gaussian distribution with a mean of

0 radians and a standard deviation of π/12 radians or about 15 degrees. A miss is

defined as the UGV’s extended vertical reference plane sweeping past the load ART

without acquiring it, which represents the UGV’s monocular camera vision. This
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number of misses is modeled as a Poisson random variable with a mean of 0.55, per

testing observations. A load is considered acquired upon the UGVs extended vertical

reference plane coming in contacting with the load ART after the last randomly

prescribed number of ART misses. With a measured approximate angular turn rate

of 0.2 radians per second and the inputs of the randomly selected number of misses

and initial UGV pose, the TAR time is calculated with a mathematical function. The

UGV in this TAR state can be seen in Figure 4.12. This is a simplification and estimate

of the actual ART acquisition process since in reality the monocular camera has an

angular field of view.

The Tmobile process time was measured from experimentation, resulting in a mean

of 43.1 seconds. For modeling purposes, this data is used to create a noncentral t-

distribution, which is randomly drawn from to produce Tmobile for each load-to-load

traversal. From this time measurement and TAR,

Ttotal = Tmobile + TAR (4.11)

where Ttotal is the total time to complete the process of load-to-load docking. The

same process is done to calculate a randomly drawn initial deployment-to-load docking

time but data measured from the initial way-point to dock is used. This is expressed

as DLtotal where

DLtotal = Tway−pt + TAR (4.12)
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Figure 4.12: Bird’s eye view of UGV in the ART acquisition state with θ
offset angle from the load.

and Tway−pt is randomly chosen from a t-distribution from data gathered from the

deployment-to-load times and TAR is the same value as noted for Equation 4.11.

A set consisting of 100 randomly drawn Ttotal times and one DLtotal is used for each

simulation run. A thousand random sets are generated and instantiated into a mission

simulator in Simulink for the MC analysis. In each simulation run, any of the 100

load-to-load times not utilized are neglected. Each algorithm is simulated a thousand
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times with this same load-to-load and deployment-to-load time variability to better

analyze how the physical system will respond to the algorithm and mission plans

to be implemented. The data associated with this time variability data is shown in

Table 4.6. The deployment-to-load time variability data can be seen in Table 4.7

Table 4.6
Monte Carlo load-to-load time variability data.

Ttotal Ttotal Ttotal Ttotal
avg max min std

(sec) (sec) (sec) (sec)

62.5 225 21 17

Table 4.7
Monte Carlo deployment-to-load time variability data.

DLtotal DLtotal DLtotal DLtotal

avg max min std
(sec) (sec) (sec) (sec)

47.8 100.9 18.8 13.9

For the 1000 Monte Carlo simulation runs for each algorithm, the objective function

average, maximum, minimum, and standard deviation are shown in Table 4.8.

Table 4.8
Monte Carlo comparison of the case study objective function results.

Case Study Javg Jmax Jmin Jstd
(min) (min) (min) (min)

Case A-1 516.9 622.7 392.9 35.6
Case A-2 477.4 594.8 353.8 34.5
Case B 52 62.5 45.3 3
Case C 49.6 63.6 42.6 3.4
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Figure 4.13: Hardware replication of the simulated distributed three load
scenario for hardware testing.

4.7 Discussion

The simulation case studies are theoretical results representative of potential out-

comes in applying these algorithms on the Husky UGV and distributed load systems

described. A constant traversal and docking time of 60 seconds is assumed for the

initial experiments. The MC analysis gives insight to the potential best and worst sta-

tistical case outcomes in applying these mission plans to hardware platforms. Data

from testing the scenario with a Husky UGV is documented and utilized to add

variability for MC analysis. These initial simulation results and the MC simulation

analysis results will be discussed next.
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4.7.1 Simulation Case Studies

The FCFS based methods are appealing because they are reactive to the model states

and can easily be applied in real-time if load SOC feedback can be estimated and uti-

lized. These methods would not require an a-priori mission plan and would require

less computational complexity in using simple logic to determine which load to go

charge at the current time step. Latching to a decision of fully recharging a load

in these algorithms may be more appropriate in minimizing traveling between loads.

However, this depends on the constraints that need to be satisfied by those command-

ing the mission. In evaluating the FCFS-1 method presented in Case A-1, it resulted

in the worst performance with an objective function evaluation of 477.9 minutes, with

49.4 minutes attributed to travel time. The FCFS-2 priority based method presented

in Case A-2 was successful in prioritizing Load 1 to keep it running for the entire

mission without load down-time. It resulted in a second worst objective function

evaluation of 462.7 minutes, with 49.4 minutes attributed to travel time, the same

amount as in Case A-1.

The RR inspired method is a good approach in it’s ability to provide each load equal

charging. It can apply an objective function to minimize in the algorithm, giving

options for constraints and for the type of goal desired to be achieved. It avoids

down-time of all three loads and achieves the second best objective function value of
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48.4 minutes, all attributed to travel time.

The flexible RR GA based method adds more complexity to a potential solution,

allowing a large variety of charging times to apply to different loads. From the results

of Case C, the algorithm avoids down-time of all three loads and it is successful in

determining a solution with the best objective function of 45.35 minutes, all attributed

to travel time. With this applied objective function in evaluating all the algorithms,

the flexible RR GA method in Case C is the best option to choose from and performed

the best. The RR method with a single optimized recharge time in Case B is a good

next option. For all case studies, their objective function cost results are broken down

by their attributes for comparison and are shown in Table 4.9.

Table 4.9
Comparison of the case study objective function results.

Case Study L1 L2 L3 Total Travel J
Down-time Down-time Down-time Down-time Time (min)

(min) (min) (min) (min) (min)

Case A-1 122.2 117.2 189.1 428.5 49.4 477.9
Case A-2 0 216.2 197.1 413.3 49.4 462.7
Case B 0 0 0 0 48.4 48.4
Case C 0 0 0 0 45.35 45.35
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4.7.2 Monte Carlo Simulations

The MC simulations show the results of applying 1000 simulation runs for each algo-

rithm scheduling strategy, each utilizing the same randomly drawn variable load-to-

load traversal and docking times. The results from Table 4.8 show a large standard

deviation in the objective cost in Cases A-1 and A-2. Cases B and C show relatively

low objective costs where the larger standard deviation in Case C with a higher max-

imum and lower minimum. This leads to believe that Case C may have a higher

risk but higher reward associated with implementing it. These results are further

expanded in Table 4.10 which shows the one thousand simulation runs average cost,

average load down-time, average UGV travel and charge time, and average ratio of

travel to charge time for each algorithm. Note that all ratio values are all very close

which shows that the effectiveness of each algorithm does not seem to reflect the

overall UGV average travel and charge time. This shows that the effectiveness of the

algorithm is not solely determined by how much total time the UGV spends traveling

between and charging loads. This points to the importance of when the UGV load

charging and traversing events occur in time, and for which loads these actions are

directed towards overtime. Also note that the average load down-time for cases B

and C is 1 and 1.8 minutes, respectively, which is not zero as one may expect. This

is due to implementing algorithms which previously assumed a 60 second traversal

time prior to adding the traversal variability times. Also, it is not noted in the tables
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but the FCFS-2 algorithm has an average load down-time of 14 seconds, which was

previously 0 without traversal variability. Again, this is due to assuming a 60 second

traversal and docking time. This could be improved by assuming a more conserva-

tive traversal and docking time but there is a trade off in performance in doing this,

which is expected to decrease if implemented. These In determining to implement

these algorithms, one should consider these statistical output results of the average,

best, worst, and standard deviation as shown in Tables 4.8 and 4.10.

Table 4.10
Monte Carlo comparison of the case study objective function results.

Case Study Javg Average load Average travel Average charge Average
down-time time time travel/charge

(min) (min) (min) (min) time ratio

Case A-1 516.9 469.3 47.6 1392.4 0.034
Case A-2 477.4 428.1 49.3 1390.9 0.035
Case B 52 1 51 1389 0.037
Case C 49.6 1.8 47.8 1392.2 0.034

4.8 Conclusion

In this chapter, a general framework and several solution methods are presented

with a goal to optimally recharge distributed loads in an operating field, utilizing a

mobile energy asset with wireless inductive charging. Both real-time reactive algo-

rithms and algorithms resulting in a-priori mission plans are explored. Results of the

scheduling algorithms, including a flexible genetic algorithm approach, are compared
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and discussed. A Monte Carlo analysis performed provides additional data about the

variability in the algorithms’ outputs when real-world based variability measurements

are included in the simulations. The flexible round-robin genetic algorithm approach

is found to perform the best. This method and modeling used can be extended to

various types of distributed loads such as recharging WSNs or UAVs used for data

collection, surveillance, or reconnaissance. It can also be extended to include results

from applying these load scheduling algorithms on the Husky UGV hardware with one

or multiple mobile UGVs. Simulation studies can be expanded to include multiple

mobile energy sources and additional heterogeneous distributed loads in a multitude

of different time frames.

In the next chapter, an extension of this optimization strategy is presented which

optimizes the recharging of UAVs with a UGV to complete various reconnaissance

mission objectives. Different combinations of resources are considered in achieving

different mission goals. Results of various case studies show the robustness of the

method presented.
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Chapter 5

Optimal Mission Routing of UAVs

and Collaborative Recharging

UGVs for Intelligence,

Surveillance, and Reconnaissance

5.1 Introduction

As modern warfare becomes more dangerous to military personnel operating and

leading missions on foot in potentially hostile environments, the use of real-time data
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for smart and autonomous systems will become more involved in military operations.

To reduce the risk of harm to military soldiers and civilian bystanders, the utility

of these autonomous systems needs to be optimized to ensure an efficient, effective,

and fast operation. This chapter proposes algorithm optimization strategies of task

allocation for unmanned aerial and ground vehicles (UAVs and UGVs) for military

reconnaissance (recon). The objective is to create an optimal mission plan to perform

reconnaissance in target areas, along with recharge the UAVs with UGVs wirelessly,

to extend and optimize their operational life based on the mission at hand. This work

investigates two different reconnaissance missions, one with the goal of minimizing

the mission time and another to maximize the area reconned. The results show

that the optimization approach and methods can be regarded as a reliable schedule

optimization tool for this application of wireless recharging of mobile UAVs with

mobile UGVs. The proposed approach can be extended to other operations such

as mobile robotic explosive ordnance disposal (EOD) teams scanning for improvised

explosive devices (IEDs).

Military reconnaissance is a concept that has been used for hundreds of years. The

purpose is to gain as much intelligence as possible to minimize risk before another

operation is carried out. Reconnaissance in itself is a dangerous and life-threatening

mission, even when performed by the most trained team of military specialists. The

reconnaissance team is exploring areas in which they have little existing knowledge

of, such as the area landscape, terrain, and potential hostile enemies. Intelligence
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gained from reconnaissance may be utilized before advancing or relocating a forward

operating base (FOB) or used for other future mission plans. With the increasing

use of intelligence gathering devices in military practices such as UGVs and UAVs,

military personal are at a lower risk of harm by utilizing these agents in place of a

human life to perform a mission. The use of these devices will become more frequent

as variables such as battery life, computation expenses, and data communication are

improved.

One of the major challenges in utilizing UAVs for reconnaissance missions is their

limited battery capacity. Without recharging or exchanging batteries, a single UAV is

extremely constrained in its ability to investigate large areas in need of reconnaissance.

One step in improving this is optimizing the mission in which these autonomous agents

are used. Operating these agents in coordination with each other, with the ability

for them to work as a team, is crucial. Like most military operations, a plan needs

to be established before the mission is conducted to understand how the mission will

be coordinated and carried out. This plan needs to be as efficient and optimal as

possible. There are essentially infinitely many ways to define or establish what is

optimal, and this is often mission dependent. The objective functions involved may

seek to minimize mission time, energy utilized, intelligence gathered, or a combination

of these.
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The question which this work begins to help answer is “Now that we have the au-

tonomous systems to carry out this task, how to we make the best use their energy

resources to complete the mission in an optimal manner?” This chapter proposes al-

gorithm optimization strategies of task allocation for UAVs and UGVs for military

reconnaissance. The objective is to create a mission plan for each resource utilized

in the reconnaissance operation, with the UAVs conducting the reconnaissance and

a UGV traversing to targets along the UAVs’ paths as rendezvous positions for peri-

odic recharging. The UAV portion of the mission plan defines the targets and target

reconnaissance sequence for each UAV utilized. The UGV portion of the mission

plan defines which UAV it will recharge, as well as when, where, and how long. The

mission plan outcome is dependent on the optimization goals for the reconnaissance

mission. A concept example of a UAV following a mapped mission plan trajectory

and a UGV recharging the UAV at various rendezvous mission plan locations is shown

in Figure 5.1. This work investigates two different types of recon missions, one with

the goal of minimizing the mission time and another to maximize the area reconned.

The results show that the optimization approach and methods can be regarded as a

reliable schedule optimization tool for this application of wireless recharging of energy

constrained mobile UAVs with energy constrained mobile UGVs. The proposed ap-

proach can be extended to other operations such as mobile robotic explosive ordnance

disposal (EOD) teams scanning for improvised explosive devices (IEDs).
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Figure 5.1: Bird’s-eye view of collaborative recon mission concept with a
UAV following the blue line trajectory and a UGV following red dotted-line
trajectory with recharging rendezvous locations at the green dots.

5.2 Related Work

Many optimization problems involving limited resources with time or energy con-

straints can be constructed as task allocation [19] or scheduling problems, with [61]

contributing one of the earliest works on production schedule optimization. Within

this larger research area, as technology has developed, new facets around combinato-

rial optimization problems [62] have come into focus. These include variations of the

Traveling Salesman Problem (TSP) [63], such as the Vehicle Routing Problem (VRP),

and further variations of VRP [64]. Technology development surrounding autonomous
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mobile robots and drones has inspired the use of these resources in problems like the

VRP.

Research in determining optimal flight routes, requiring optimal recharging locations,

is investigated in works such as [65] and [66]. The problem is formulated as a variation

to the classic TSP. Their work only considers the use of fixed charging stations to

recharge the UAV. Also, only a single UAV is utilized so there is no need to schedule

the use of a given charging station.

Research in collaborative UAVs and UGVs has been investigated in several studies,

each with different considerations, depending on the application. Because of this,

many different problem formulations are presented. In [67], the problem is approached

and formulated into a two-echelon ground vehicle and its mounted unmanned aerial

vehicle cooperative routing problem (2E-GUCRP), for intelligence, surveillance, and

reconnaissance (ISR) missions. The work presents a mixed integer programming

(MIP) solution method along with two improved heuristic approaches. The studies do

not include the use of multiple UAVs as this work does. Also, the work only considers

a minimal mission time objective, leading to certain aspects of the supporting UGV

to be neglected, such as its limited operational life.

Research specifically in maximal area coverage is investigated in [68] where a UAV

is launched from an aircraft carrier which moves continuously in a straight line. A

GA method is proposed which outperforms the nearest neighbor and hill-climbing
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algorithm approach. Although this work has a similar objective in mind, the problem

formulation and constraints are much different as compared to how it is presented

in this work. Also, only a single UAV is deployed for the mission considered, where

multiple UAVs are considered in this chapter.

[69] presents a similar problem related to the work in this chapter as a Fuel Con-

strained UAV Routing Problem using Mobile Refueling Stations (FCURP-MRS). The

work incorporates a greedy strategy to solve the problem with a simulator in MAT-

LAB. As with previous work mentioned, this work only incorporates a single UAV

and does not consider the energy capacity of the mobile refueling station.

With the previous mentioned literature in mind, very little existing research in this

area of collaborative UAV/UGV systems considers the battery capacity or operational

life of the supporting UGV, which is critical in operations to maximize area coverage,

and should be at least taken into consideration in minimal time objective missions.

Furthermore, most of the existing research in this field assumes the use of a single

UAV and UGV and does not analyze benefits of additional resources whether it be a

UAV or UGV. There is also little analysis of the optimal mission outcomes such as

the UAV/UGV SOC over the course of the mission, as well as standby, charging, and

travel time of resources to support what really happens during the mission.

In this work, UAVs are utilized to perform reconnaissance and gain intelligence of

hostile enemies or any unknown presence in the desired area. Due to the extent of
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the mission at hand and utilizing a limited number of UAVs with limited battery life,

a UGV is provided for mission assistance to charge the UAVs when needed via near

field wireless power transfer. Equipped with much larger battery storage, the UGV

is able to intercept the UAVs periodically at rendezvous locations to recharge them.

It is assumed that obstacles, and terrain have been pre-mapped through the use of

another UAV, satellite imagery data, or some other technology. The mission goal is

to conduct reconnaissance through surveillance, sensors, radar, etc. in the mapped

area. This reconnaissance is carried out by coordinating the UAVs to stop at target

points where reconnaissance around that area is conducted. These targets areas make

up the entirety of the area in need of reconnaissance and are assumed to meet along

certain latitude/longitudes so as to not overlap.

Individual agent properties such as state of charge, as well as terrain data, rendezvous

target points, and recon areas are available to the autonomous entities to determine

optimal targets to visit, by which UAV, and in what sequence, to determine optimal

path plans. A genetic algorithm to determine these optimal plans, along with optimal

UAV-charging times, locations, and duration is the focus of this chapter.

The remainder of this chapter is organized as follows. The system modeling is ex-

plained in Section 5.3. In Section 5.4 the GA optimization method is discussed with

several case studies presented in Section 5.5. Section 5.6 compares the outcomes of

the case studies and discusses their relevant importance. Conclusions and future work
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are then presented in Section 5.7.

5.3 Problem Formulation and System Modeling

Within an area of desired reconnaissance, consider that there are NT distributed tar-

get areas that require reconnaissance with NA UAVs and NG UGVs utilized for this

purpose. While airborne, the UAVs perform the reconnaissance and the UGVs sup-

port this mission with the ability to recharge the UAVs periodically at different target

locations when necessary. Part of the problem to be solved in this mission is to deter-

mine which targets should be reconned by which UAV, and in what sequence. Another

part of the problem to be solved is to determine the recharging sequence, locations,

and duration of individual wireless recharging of the UAVs with the UGVs, that

optimizes a desired objective function and satisfies constraints. These two parts are

solved separately as what is referred to in this work as the Phase-One and Phase-Two

mission optimizations, respectively as presented. These types of traveling combinato-

rial optimization problems are in general computationally difficult. [70] formulates a

similar type of mobile charger optimization problem and proves that it is NP-hard[58].

The system modeling within the context of this chapter is similar to the concepts

explained in [3] and Chapter 4. Stateflow, a control logic design tool available in

MATLAB/Simulink are utilized to take the mission system dynamics and operations
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into account, including time attributed to the traversing of UAVs and UGVs, recon-

naissance by the UAVs, and battery SOC of the resources. Further details of the

system/problem modeling are discussed next in separate subsections.

5.3.1 UAVs

The UAV and UGV batteries are modeled using the Simulink-SimscapeTM generic

dynamic rechargeable battery model found in the Simulink Specialized Power Systems

library. With the available user input parameters, the UAV rechargeable batteries

are modeled as 9.6 V , 2000 mAh, NiMH, the same modeling as the loads presented

in Chapter 4. The UAVs are assumed to always be operating in one of three different

operating modes, which are reconnaissance, charging, and standby. Reconnaissance

mode represents a UAV either performing recon or traveling between target areas.

When in this mode, the UAVs are assumed to be traveling at a constant speed of

5 m/s and this is simulated by apply a 5 Ω resistive load to its battery.

Charging mode operates when the UAV has been intercepted by, and lands on top

of a UGV for wireless power transfer. The receiving module in the wireless charging

systems, as described in Chapter 4, is assumed to be incorporated in and on the

bottom of the UAV. This receiving module operates at 12 V and 2 A, converted from

the transmitting module’s 24 V , 1 A. This 1 A draw from the UGV battery and
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2 A input to the UAV load battery are utilized in the model to reflect the hardware

architecture that has been developed in previous research. This mode is simulated

by applying a constant 12 V DC voltage across its battery, as was done in Chapter 4

to simulate the charging of the distributed loads.

Standby mode is in operation when the UAV is at a charging rendezvous target

location before a UGV has arrived there. This mode has no resistive loads associated

with it and the SOC of the corresponding UAV remains constant during this mode.

The UGV system modeling is discussed next.

5.3.2 UGVs

The UGV battery is modeled as a lead acid 24 V , 20 Ah, which is the same battery

type and specifications used in the Clearpath Husky A200 UGVs discussed in Chap-

ter 4. The UGV is assumed to always be operating in one of three different modes,

which are travel, charging, and standby. Travel mode represents a UGV traveling be-

tween rendezvous recharging target areas. When in this mode, the UGV is assumed

to be traveling at a constant speed of 1 m/s, which is consistent with the max rated

speed of a Clearpath Husky. This is simulated by applying a 3.4 Ω resistive load to

its battery.

Charging mode operates when the UAV has been intercepted by, and lands on top
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of a UGV for wireless charging. The transmitting module in the wireless charging

systems, as described in Chapter 4, is assumed to be nested on top of the UGV for the

UAV to land on for charging. This 1 A draw from the UGV battery and 2 A input to

the UAV load battery are utilized in the model to reflect the hardware architecture

that has been developed in previous research. This mode is simulated by applying a

9.3 Ω load on its battery.

As with the UAVs, standby mode is in operation when the UGV is at a charging

target location before a UAV has arrived there and it is waiting for it to land on it

for charging. This mode is simulated by applying a 15 Ω load on its battery. These

resistive loads applied to the UGV in these simulated modes are chosen based on

average results from monitoring the current draw from a Clearpath Husky UGV 24 V

battery in these three operating modes. This is done to get a more realistic estimate

of the energy consumption in these operating modes. The sampling of the three UGV

operating modes can be seen in Figure 5.2. See [59] for more details on the Simulink

generic dynamic rechargeable battery model used and see Chapter 4 for more details

on the use of Stateflow for system modeling.
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Figure 5.2: Sampling of current draw from a Clearpath Husky UGV 24 V
battery in standby, charging, and traversing modes.

5.3.3 Target Areas

The operational area in which missions are conducted is considered relatively flat,

and the travel trajectories are considered in 2D. The central locations of the target

areas are assumed to be known and constant. These target areas are considered

homogeneous in that they all take the same amount of time to be reconned, which is

10 minutes each. The euclidean distance is assumed for travel between target areas

by the resources.
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5.3.4 Mission Details

In all mission types investigated, all resources begin at the same deployment location

of (0,0) (lower left corner of map) and all batteries at 100% SOC. A mission is

considered complete when all resources return to this initial deployment location,

after their mission commands have been completed. This mission completeness is a

constraint and is a requirement for a potential optimal solution.

Some lower level control logic is built into the simulator when carrying out the mission.

After a UAV travels to its commanded target area, there is a check to make sure it

has enough energy to complete that target reconnaissance. This check is based on a

constant energy decrease due to the drone flying. There is also a check if the current

target area is part of the UGVs charging mission plan. If the UAV has enough

energy at this point, and is not part of the UGVs charging mission plan, it performs

reconnaissance on its current commanded target. If this check fails, the UAV enters

standby mode and waits for a UGV to intercept it at that location for charging. After

a UAV finishes reconnaissance in a target area, there is a check to make sure it has

enough energy to travel to the next target area. There is also a check if the current

target is part of the UGVs charging mission plan. If this check fails, the result is

the same as the previous check. Because of these checks, a UAV cannot perform

partial reconnaissance or partial travel to another target before it is charged. When
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recharging a UAV, once it reaches 100%, charging is automatically stopped regardless

of the assigned charge duration for that instance and the resources continue with their

mission assignments.

With all the above considered, proper mission operations and coordination of the

UAVs and UGVs are needed to optimize their utility, depending on the mission ob-

jective. Next, the GA optimization strategy is introduced along with the mission

objectives pursued.

5.4 Optimization

In optimizing this mission described in its entirety, the problem for some of the case

studies are split into two phases. The first phase identifies the optimal sequence of

targets to be reconned by the drones. Phase-two optimizes the sequence of locations

and durations in which the UGV charges the drones to support them in extending

their operation. Phase-One outputs the mission plan for the drones, which is an input

to Phase-Two. These optimization phases are discussed in more detail next.
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5.4.1 Phase-One: UAV Recon Routing Optimization

Cases A and C utilize this Phase-One optimization because of their overarching mis-

sion objective is to minimize the mission time. The mission is considered complete

when all resources have returned to their initial deployment location. This phase con-

tributes to the mission goal by determining an optimal drone mission plan consisting

of the targets and sequence each UAV should recon. For this mission objective, an

initial partial desired target sequence with some tolerance is enforced to allow military

members or other autonomous mobile systems to move to another forward operating

base (FOB), target 11 in this case, in real-time as the target areas are deemed safe by

reconnaissance. If a single drone is utilized then the objective function in this phase

is

J1.1 = travel + penalty (5.1)

where travel is the total distance traveled by the drone between targets, such that

every target is visited once and the drone starts and ends at position 1 (initial deploy-

ment). penalty is a penalty cost assessed which is the result of comparing a desired

sequence, with some order tolerance, to the solution found.

If multiple drones are utilized then this Phase-One objective function becomes

J1.2 = max(travel1, travel2, ...travelNA
) + penalty (5.2)

110



www.manaraa.com

where travelNA
is the total distance traveled by theNth UAV. This turns a component

of the objective function to a mini-max objective to minimize the maximum total

travel of a UAV. This is done to try to distribute travel by all the drones evenly and

to share the task of reconnaissance. penalty is the same as described in equation 5.1.

The problem solved in this phase is similar to the traveling salesman problem (TSP)

but an additional penalty condition is enforced to find a solution that prioritizes the

order in which the targets are reconned. The GA is used in this phase, where the

design variables are the sequence in which the targets are visited for reconnaissance

in the case where a single drone is used. If N drones are deployed in the mission, the

design variables are split into N sections, each in the sequential order in which the

targets should be reconned by the respective drones.

5.4.2 Phase-Two: UAV-UGV Charging Optimization

This phase optimizes the sequence, locations, and durations in which the UAVs are

intercepted by the UGVs for charging using the GA. For the case studies examined

in this chapter, two different Phase-Two objective functions are applied for multiple

mission goals. Cases A and C seek to minimize the mission time where this objective
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function is represented as

J2.1 = max(time1, ...timeNA
, time1, ...timeNG

) + penalty (5.3)

where timeNA
and timeNG

are the mission completion times of the Nth UAV and

UGV, respectively. penalty is an additional cost if all resources do not complete their

mission plans. A resources’ mission is considered complete when it has fulfilled its

mission plan and has returned to the initial deployment location.

Cases B and D attempt to maximize the total number of target areas reconned. This

objective function is represented by

J2.2 = −1 ∗
NA∑
N=1

targetN + penalty (5.4)

where targetN is the number of targets reconned by the Nth UAV. penalty is an

additional cost if all resources do not complete their mission plans. In all case missions

the UGVs’ operational energy is limited to a single full charge.

This Phase-Two optimization has design variables which are represented partially

by a zero/one vector of length NT , which corresponds to all UAV’s mission plans.

A zero or one reflects either not intercepting or indeed intercepting a UAV at that

corresponding target for charging, respectively. Another section of the design vector

reflects the charging times and corresponds to the ones in the zero/one vector portion.
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Table 5.1
Mission parameters for all case studies.

Parameter UAV UGV

Standby load (Ω) 0 15
Charge/Discharge 12V 9Ω

Travel load (Ω) 5 3.4
Initial SOC (%) 100 100

In this approach, the number of times a UGV recharges a UAV is a variable (variable-

sized design space) and allows the optimizer to find the optimal decisions to be made.

5.5 Simulation Case Studies

Four simulation case studies are presented in this section. Of these case studies, two

different combinations of UAV and UGV resources are explored. Cases A and B

utilize a single UAV and UGV and Cases C and D utilize two UAVs and a single

UGV. A maximum simulation time window is set to 24 hours, and the simulation will

end earlier once the mission is complete.

Table 5.1 shows the UAV and UGV mission parameters used in all case studies.
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5.5.1 Case A: One UAV, One UGV, 15 Targets, Minimal

Mission Time

In this first case study, a single UAV is required to perform reconnaissance on 15

different target areas. A single UGV is used to provide UAV battery recharging

support periodically. The objective is to minimize the mission time, as described as

the objective function J1.1 in Equation 5.1.

In Phase-One, the GA optimization results in multiple UAV mission plans with costs

of 2140.5 meters. The mission plan selected for the continued Phase-Two optimization

is {5, 2, 6, 10, 7, 11, 12, 15, 16, 8, 4, 3, 14, 13, 9, 1} and is shown as the dotted blue line in

Figure 5.3. Part of this result is due to the enforced penalty in the objective function

which desired an initial sequence of {2|5, 6, 7|10, 11, 12|15, 16} to prevent a penalty.

The vertical line | between two target referenced numbers in this desired sequence

means they both need recon, but the order of them does not matter.

The optimal solution for Phase-Two results in a mission time of 5.35 hours. The

operational components of this mission time are broken down and shown in Ta-

ble 5.2. The optimal UGV mission plan consists of charging the UAV at target

locations {11, 12, 15, 4, 3, 14, 9} before returning to the FOB at (0, 0). The respec-

tive optimal charging times at these target locations in minutes are found to be
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Figure 5.3: Case A UAV (dotted blue) and UGV (solid red) optimal mis-
sion routes with charging locations highlighted (green).

{21, 29, 28, 39, 15, 15, 15}. These optimal UAV and UGV mission trajectories over

the course of the mission can be seen in dotted blue and solid red lines, respectively,

in Figure 5.3. The SOC of the UAV and UGV over the course of the mission can be

seen in blue and red, respectively, in Figure 5.4.

Table 5.2
Operational time components for Case A.

Time Measurement UAV UGV
(Hours)

Recon/Travel 2.63 0.44
Charging 2.72 2.72
Standby 0 2.07

Mission Time 5.35 5.23
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Figure 5.4: Case A mission SOC for the UAV (blue) and UGV (red).

5.5.2 Case B: One UAV, One UGV, Max Area Coverage

In this case study, a single UAV is required to perform reconnaissance on as many

target areas as possible, up to 49 targets, which are organized in a 10 by 5 grid pat-

tern. As in Case A, a single UGV is used to provide UAV battery recharging support

periodically. The objective is to maximize the total area reconned by the UAV, as de-

scribed in the objective function J2.1 in Equation 5.3. The UGV battery is limited to

a single charge which constrains both energy attributed to travel, charging the UAV,

and standby. In this case, Phase-One optimization is neglected and reconnaissance

is performed in a serpentine-shaped manner, resulting in a UAV mission plan that

initially progresses north of the FOB towards Target 10, then east to Target 20, then

south towards Target 11. This UAV mission plan is shown as the blue dotted line in
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Figure 5.5

The Phase-Two optimal solution results in 19 target areas reconned with a mission

time of 9.01 hours. The operational components of this mission time are broken down

and shown in Table 5.3. The optimal UGV mission plan consists of charging the UAV

at target locations {2, 6, 8, 10, 20, 19, 18, 17, 16} before returning to the FOB at (0, 0).

The respective optimal charging times at these target locations in minutes are found

to be {22, 110, 51, 51, 12, 32, 22, 22, 22}. The optimal UAV and UGV mission plans

over the course of the mission can be seen in blue and red, respectively, in Figure 5.5.

The SOCs of the UAV and UGV over the course of the mission can be seen in blue

and red, respectively, in Figure 5.6.

Table 5.3
Operational time components for Case B.

Time Measurement UAV UGV
(Hours)

Travel/Recon Time 3.28 0.53
Charge Time 5.73 5.73
Standby Time 0 2.03
Mission Time 9.01 8.29
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Figure 5.5: Case B UAV and UGV optimal mission routes with charging
locations highlighted green.

Figure 5.6: Case B mission SOC for the UAV and UGV.
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5.5.3 Case C: Two UAVs, One UGV, 15 Targets, Minimal

Mission Time

For a more complicated case, two UAVs are utilized to perform reconnaissance on

the same 15 target areas as in Case A. A single UGV is used to provide UAV battery

recharging support to the two UAVs. As in Case A, the objective is to minimize the

mission time.

In Phase-One, the GA optimization results in UAV mission plans with a

cost of 1141.42 meters, where UAV1 and UAV2 target mission plans are

{5, 6, 10, 15, 16, 8, 4, 3} and {2, 7, 11, 12, 14, 13, 9}, respectively, before returning to the

original FOB at (0,0). These mission plans for UAV1 and UAV2 are shown as the

dotted blue and dotted black lines, respectively, in Figure 5.7.

The optimal solution for Phase-Two results in a mission time of 1.96 hours. The op-

erational components of this mission time are broken down and shown in Table 5.4.

The optimal UGV mission plan comprises charging UAV1 and UAV2 at target loca-

tions {5, 16, 3} and {11}, respectively, before returning to the FOB at (0, 0). The

respective optimal charging times at these target locations in minutes are found to

be {8, 11, 14} and {25}. These optimal UGV mission plans over the course of the

mission can be seen as the solid red lines in Figure 5.7. The SOC of all the resources
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Figure 5.7: Case C UAV1 (dotted blue), UAV2 (dotted black), and UGV
(red) optimal mission routes with charging locations shown with a green
outline.

over the course of the mission can be seen in Figure 5.8.

Table 5.4
Operational time components for Case C.

Time Measurement UAV1 UAV2 UGV
(Hours)

Recon/Travel 1.4 1.23 0.27
Charging 0.56 0.42 0.98
Standby 0 0 0.59

Mission Time 1.96 1.65 1.84
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Figure 5.8: Case C mission SOC for UAV1 (blue), UAV2 (black), and UGV
(red).

5.5.4 Case D: Two UAVs, One UGV, Max Area Coverage

In this final case study, two UAVs are utilized to perform reconnaissance on the

same 49 target areas as in Case B. A single UGV is used to provide UAV battery

recharging support to the two UAVs. As in Case B, the objective is to maximize the

area reconned by the UAVs, thus maximizing the number of target areas reconned.

The UAV mission plan used in Case B is also used here, but it is split up between the

two UAVs. UAV1 is assigned 25 target areas and UAV2 is assigned 24 target areas.

These are assigned on an alternating basis in the same serpentine pattern as in Case

B.

The Phase-Two optimal solution results in 26 target areas reconned with a mission
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time of 7.98 hours. The operational components of this mission time are broken

down and shown in Table 5.5. The optimal UGV mission plan consists of charging

UAV1 and UAV2 at target locations {4, 6, 8, 15, 22} and {3, 7, 9, 18, 12} respectively

before returning to the FOB at (0, 0). The respective optimal charging times at

these target locations in minutes are found to be {162.1, 91.5, 65.9, 58.63, 34.3} and

{70.75, 155, 126, 75.75, 54}. It is worth mentioning again that if a UAV reaches 100%

SOC during the scheduled recharging period, the remainder of the scheduled charging

time is negated and the assets continue on with their respective mission plans. The

optimal UAV and UGV trajectories/mission plan over the course of the mission can

be seen in dotted blue, dotted black, and red lines in Figure 5.9. The SOCs of the

UAV and UGV over the course of the mission can be seen in blue, black, and red in

Figure 5.10.

Table 5.5
Operational time components for Case D.

Time Measurement UAV1 UAV2 UGV
(Hours)

Recon/Travel 2.33 2.34 0.52
Charging 3.17 3.41 6.58
Standby 2.48 1.99 0.56

Mission Time 7.98 7.74 7.66
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Figure 5.9: Case D UAV1, UAV2, and UGV optimal mission routes with
charging locations highlighted green.

5.6 Discussion

The simulation case studies result in theoretical, optimal a-priori mission plans for

several operations, utilizing UAVs and a UGV. In the case studies presented, two

different combinations of UAVs and UGVs, each evaluated for two different objective

functions, are examined.
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Figure 5.10: Case D mission SOC for UAV1, UAV2, and the UGV. Note
the flat UAV SOC regions represent the UAVs in standby mode, waiting to
be charged by the UGV.

5.6.0.1 Cases A and C: Minimal Mission Time

With Phase-One optimization applied in Cases A and C, optimal UAV mission routes

are determined. A comparison of the total distances traveled in each case are shown

in Table 5.6. It is noted that the use of two UAVs instead of one decreases the

total travel between target areas by about 1000 meters, while still meeting the recon

sequence constraint presented in these cases. This data can be interpreted to better

understand the amount of stress put on one or more UAVs to achieve the mission

in minimal time, and help determine an appropriate amount of UAVs to employ

accordingly.

Phase-Two optimization applied to these two cases determines a UGV mission plan for
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Table 5.6
Phase-One: Comparison between Cases A and C for J1.1 and J1.2,

respectively.

Case Study Distance Traveled Between Targets
(meters)

Case A 2140.5
Case C 1141.4

optimal charging locations and respective durations. A comparison of these mission

objective functions for each set of teams is shown in Table 5.7. Note that for Cases A

and C, the mission time is over two times as long for Case A which uses a single UAV

versus Case B using two UAVs. This comparative outcome is important because it

confirms for this time critical scenario that if only two hours are available, the mission

should be able to be completed in that time frame and to make the decision to utilize

two UAVs instead of one. One limiting factor in this mission is the availability of

the UGV to the UAVs for charging. If the UAVs have standby time and are waiting

for the UGV for recharging, that is time wasted. Although this does not occur

in this scenario, adding additional UAVs for this mission may not add additional

benefits without additional UGVs added. An analysis of using different resources

is important for these types of missions because it gives the mission coordinator a

better understanding of the work involved from each resource if used and the mission

outcome as a whole.
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Table 5.7
Phase-Two: Comparison of Cases A and C for J2.1.

Case Study Minimal Mission Time
(hours)

Case A 5.35
Case C 1.96

5.6.0.2 Cases B and D: Max Area Reconnaissance

Phase-One optimization is not applied in Cases B and D, and a serpentine mission

routes for the UAVs are assumed. For Phase-Two optimization, a comparison of

the total number of targets reconned in each case are shown in Table 5.8. It is

noted that the use of two UAVs instead of one increases the total number of targets

reconned by seven. One limiting factor in this scenario is the battery life of the

UGV. If more UAVs were added to this scenario, one may expect there to be some

point in which additional UAVs no longer significantly increases the number of targets

reconned. This information can aid a better understand the limitations of using a

specific combination of UAVs and UGVs.

Table 5.8
Phase-Two: Comparison of Cases B and D for J2.2.

Case Study Number of Targets Reconned

Case B 19
Case D 26
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5.7 Conclusion

In this chapter, the general framework for a solution method is presented with a goal

to optimally distribute UAVs for military reconnaissance missions, as well as opti-

mally utilize a UGV for support in charging the UAVs. Two different reconnaissance

missions are explored, including minimal mission time and maximal area coverage.

Each of these missions investigated the use of different assets. The results of opti-

mal UAV mission plans for specific targets to recon, as well as optimal UGV mission

plans to intercept and charge one or multiple UAVs is shown. Using a GA solution

method gives promising successful results for a-priori reconnaissance mission plans.

This method and modeling can be extended to other types of missions and objectives

such as UAV and UGV detection of IEDs. This work can be expanded to include more

simulations with different team resource combinations to better analyze the optimal

number of UAV and/or UGV resources for a specific mission operation.

In the next chapter, a deeper connection between the optimization applications dis-

cussed in Chapters 3, 4, and 5 is presented. The importance of each of these chapters

and applications is discussed. Future work considerations are also presented.
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Chapter 6

Conclusion

The work in this thesis investigates optimal resource planning and scheduling as

applied to the applications of autonomous mobile microgrids, WSNs, and military

ISR missions. The case studies explore optimal positions and connections in a mobile

microgrid system and the optimal recharging of distributed loads involved in WSNs

and military reconnaissance. The results are important to the understanding of how

to make the best use of resources to accomplish an objective optimally.

In Chapter 3, the optimal mobile energy source locations and connections in a micro-

grid system with known load resistances, constraints, and locations are determined

using GAs. Several case studies are examined involving different locations and quanti-

ties of loads to service and the number of mobile energy resources available. Multiple
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objective functions are examined, presenting reasonable results, which shows the ro-

bustness of the GA utilized. Specifically, in this application, the investigation is

important to acknowledge the importance of the objective function and constraints

applied in the problem, regarding the mission goal.

Chapter 4 shifts the optimization perspective to include the energy availability over-

time of distributed loads such as in a wireless sensor/surveillance network. Several

greedy algorithmic approaches are examined along with a GA approach to deter-

mine the optimal procedure of recharging the loads. The results are evaluated and

compared based on the costs of recharging UGV travel and load down-time. The

work in this chapter is significant because it incorporates and optimizes the use of

wireless power transfer in a sub-microgrid system, in addition to the wired power

infrastructure presented in chapter 3.

Finally, Chapter 5 extends on the optimization concept in Chapter 4 by considering

mobile loads as UAVs in a reconnaissance mission. The optimal UAV and UGV

mission plans are determined for two different mission goals, each evaluated using two

different combinations of UAVs and a UGV. The results in this chapter is influential

in this area of research because they examine and compare the use of multiple UAVs

in two different mission types. This aspect of optimal autonomous energy agent use

builds onto the use of a sub-microgrid system which could be part of a larger group of

heterogeneous energy resources in a mobile microgrid system. Each of these energy
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resources could have a different functionality, with agents in Chapter 5 supporting

intelligence, surveillance, and reconnaissance missions.

This thesis explains and demonstrates the contributions of the development and anal-

ysis of solution methodologies and mission simulators for a-priori mission plan de-

velopment and testing, for applications in organizing and scheduling power delivery

with mobile energy assets. Using the methods described throughout this work results

in the development and analysis of reasonable a-priori mission plans for autonomous

mobile microgrids/assets, in the various scenarios presented.

There are some additional future considerations to be examined in the continuation

of this work. In Chapter 3, it would be desired to consider the energy life of the

resources or priority of a specific load, and perform an architecture re-optimization at

some point. This could be initiated by a source running out of energy, a new source

being introduced, or load shedding. Case studies in Chapter 4 can be extended by in-

corporating a more complicated or random load distribution, including the number of

loads, their placement, and their respective load profiles. It would also be interesting

to determine some optimal number of resources needed to fulfill a mission, meeting

specific energy or SOC constraints. The content in Chapter 5 could be expanded

by developing the Phase-One and Phase-Two optimization procedures as a joint op-

timization to see if the objective function cost improves. Also, one could perform

a similar Monte Carlo analysis as was done in Chapter 4 to determine performance
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when faced with input uncertainties. Because of mission uncertainties, as a next step,

real-time mission planning in all Chapters’ 3, 4, and 5 scenarios should be considered

as well.
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[28] M. Petrĺık, V. Vonásek, and M. Saska, “Coverage optimization in the cooperative

surveillance task using multiple micro aerial vehicles,” in IEEE International

Conference on Systems, Man and Cybernetics (SMC), Oct 2019, pp. 4373–4380.

[29] C. R. Calladine, Understanding DNA : The Molecule and How It Works.

Academic Press, 2004, vol. 3rd ed. [Online]. Available: http://search.ebscohost.

com/login.aspx?direct=true&db=nlebk&AN=189462&site=ehost-live

[30] O. Abdelkhalik and S. Darani, “Evolving hidden genes in genetic algorithms for

systems architecture optimization,” ASME Journal of Dynamic Systems, Mea-

surement and Control, pp. 1–11, 2018.

[31] P. Venkataraman, Applied Optimization with MATLAB Programming. New

Jersey, USA: Wiley & Sons, Inc, 2009.

[32] The Mathworks Inc, “Genetic algorithm options,” 2020, (Accessed 26

February 2020). [Online]. Available: https://www.mathworks.com/help/gads/

genetic-algorithm-options.html

[33] A. Kwasinski, V. Krishnamurthy, J. Song, and R. Sharma, “Availability evalu-

ation of micro-grids for resistant power supply during natural disasters,” IEEE

Transactions on Smart Grid, vol. 3, no. 4, pp. 2007–2018, Dec 2012.

[34] C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient distribution system by mi-

crogrids formation after natural disasters,” IEEE Transactions on Smart Grid,

vol. 7, no. 2, pp. 958–966, March 2016.

138

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=189462&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=189462&site=ehost-live
https://www.mathworks.com/help/gads/genetic-algorithm-options.html
https://www.mathworks.com/help/gads/genetic-algorithm-options.html


www.manaraa.com

[35] W. Weaver, M. Mahmoudian, and P. G.G., “Autonomous mobile power blocks

for prepositioned power conversion and distribution,” in NDIA Ground Vehicle

Systems Engineering and Technology Symposium, 2012, pp. 1–5.

[36] G. Tuna, V. C. Gungor, and K. Gulez, “An autonomous wireless sensor network

deployment system using mobile robots for human existence detection in case of

disasters,” Ad Hoc Networks, vol. 13, pp. 54–68, 2014.

[37] C. W. de Silva, “Some issues and applications of multi-robot cooperation,” in

IEEE International Conference on Computer Supported Cooperative Work in

Design. IEEE, 2016, pp. 2–2.

[38] A. Kwasinski, W. W. Weaver, P. L. Chapman, and P. T. Krein, “Telecommu-

nications power plant damage assessment for hurricane katrina; site survey and

follow-up results,” IEEE Systems Journal, vol. 3, no. 3, pp. 277–287, Sept 2009.

[39] H. Sugiyama, T. Tsujioka, and M. Murata, “Collaborative movement of rescue

robots for reliable and effective networking in disaster area,” in IEEE Interna-

tional Conference on Collaborative Computing: Networking, Applications and

Worksharing, 2005, pp. 1–7.

[40] Y. Wang, C. Chen, J. Wang, and R. Baldick, “Research on resilience of power

systems under natural disasters;a review,” IEEE Transactions on Power Sys-

tems, vol. 31, no. 2, pp. 1604–1613, March 2016.

139



www.manaraa.com

[41] I. Nourbakhsh, R. Sargent, A. Wright, K. Cramer, B. McClendon, and M. Jones,

“Mapping disaster zones,” Nature, vol. 439, no. 7078, pp. 787–788, 2006.

[42] S. M. Adams and C. J. Friedland, “A survey of unmanned aerial vehicle (uav)

usage for imagery collection in disaster research and management,” in Interna-

tional Workshop on Remote Sensing for Disaster Response, 2011, p. 8.

[43] B. Moridian, N. Mahmoudian, W. W. Weaver, and R. D. Robinett, “Robotic

power distribution system for post-disaster operations,” in IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct 2015, pp. 1–6.

[44] ——, “Postdisaster electric power recovery using autonomous vehicles,” IEEE

Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 62–72,

Jan 2017.

[45] K. Thulasiraman, “Circuit theory,” Encyclopedia of Physical Science and Tech-

nology, pp. 831–841, 2002.

[46] N. C. Ekneligoda and W. W. Weaver, “Game theoretic bus selection method for

loads in multibus dc power systems,” IEEE Transaction on Industrial Electron-

ics, vol. 61, no. 4, pp. 1669–1678, 2014.

[47] R. S. Einar S. Ueland and A. R. Dahl, “Marine autonomous exploration using

a lidar and slam,” in ASME 36th International Conference on Ocean, Offshore

and Arctic Engineering, Trondheim, Norway, June 2017.

140



www.manaraa.com

[48] S. Ahmadi Darani, “System architecture optimization using hidden genes genetic

algorithms with applications in space trajectory optimization,” 2018.

[49] O. Abdelkhalik and S. Darani, “Hidden genes genetic algorithms for systems ar-

chitecture optimization,” in Proceedings of the Genetic and Evolutionary Com-

putation Conference, Denver, CO, July 2016.

[50] S. Darani and O. Abdelkhalik, “Space trajectory optimization using hidden-genes

genetic algorithms,” Journal of Spacecraft and Rockets, 2017.

[51] B. Moridian, N. Mahmoudian, W. W. Weaver, and R. D. Robinett, “Postdisas-

ter electric power recovery using autonomous vehicles,” IEEE Transactions on

Automation Science and Engineering, vol. 14, no. 1, pp. 62–72, Jan 2017.

[52] W. W. Weaver, N. Mahmoudian, and G. Parker, “Autonomous mobile power

blocks for prepositioned power conversion and distribution,” in TARDEC Ground

Vehicle Systems Engineering and Technology Symposium, 2012.

[53] A. Talukder, A. Panangadan, T. Herrington, A. Blumberg, and N. Georgias,

“Autonomous adaptive resource management in sensor network systems for en-

vironmental monitoring,” in IEEE Aerospace Conference, March 2008, pp. 1–9.

[54] J. Johnson, E. Basha, and C. Detweiler, “Charge selection algorithms for maxi-

mizing sensor network life with uav-based limited wireless recharging,” in IEEE

Eighth International Conference on Intelligent Sensors, Sensor Networks and

Information Processing, April 2013, pp. 159–164.

141



www.manaraa.com

[55] L. Li, X. Yixiang, H. Xiaoguang, D. Haibin, Z. Hanyu, C. Jun, and L. Jin, “A new

rechargeable wsns based multi-uavs network and topology control algorithm,” in

IEEE 10th Conference on Industrial Electronics and Applications, June 2015,

pp. 507–512.

[56] C. M. Angelopoulos, S. Nikoletseas, and T. P. Raptis, “Efficient wireless recharg-

ing in sensor networks,” in IEEE International Conference on Distributed Com-

puting in Sensor Systems, May 2013, pp. 298–300.

[57] N. T. Thomopoulos, Essentials of Monte Carlo Simulation. Springer New

York, 2013. [Online]. Available: https://doi.org/10.1007%2F978-1-4614-6022-0

[58] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San

Francisco, 1979, vol. 174.

[59] O. Tremblay, L. Dessaint, and A. Dekkiche, “A generic battery model for the

dynamic simulation of hybrid electric vehicles,” in IEEE Vehicle Power and

Propulsion Conference, Sep. 2007, pp. 284–289.

[60] The Mathworks Inc, “Battery generic battery model,” 2019, (Accessed

16 October 2019). [Online]. Available: https://www.mathworks.com/help/

physmod/sps/powersys/ref/battery.html

[61] S. M. Johnson, “Optimal two-and three-stage production schedules with setup

times included,” Naval research logistics quarterly, vol. 1, no. 1, pp. 61–68, 1954.

142

https://doi.org/10.1007%2F978-1-4614-6022-0
https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html


www.manaraa.com

[62] B. Korte and J. Vygen, Combinatorial Optimization. Springer Berlin Heidelberg,

2018. [Online]. Available: https://doi.org/10.1007%2F978-3-662-56039-6

[63] A. P. Punnen, The Traveling Salesman Problem: Applications, Formulations

and Variations. Boston, MA: Springer US, 2007, pp. 1–28. [Online]. Available:

https://doi.org/10.1007/0-306-48213-4 1

[64] N. Pillay and R. Qu, Vehicle Routing Problems. Cham: Springer

International Publishing, 2018, pp. 51–60. [Online]. Available: https:

//doi.org/10.1007/978-3-319-96514-7 7

[65] C.-M. Tseng, C.-K. Chau, K. Elbassioni, and M. Khonji, “Autonomous recharg-

ing and flight mission planning for battery-operated autonomous drones,” arXiv

preprint arXiv:1703.10049, 2017.

[66] K. Sundar and S. Rathinam, “Algorithms for routing an unmanned aerial vehicle

in the presence of refueling depots,” IEEE Transactions on Automation Science

and Engineering, vol. 11, no. 1, pp. 287–294, Jan 2014.

[67] Y. Liu, Z. Luo, Z. Liu, J. Shi, and G. Cheng, “Cooperative routing problem for

ground vehicle and unmanned aerial vehicle: The application on intelligence,

surveillance, and reconnaissance missions,” IEEE Access, vol. 7, pp. 63 504–

63 518, 2019.

[68] H. Savuran and M. Karakaya, “Efficient route planning for an unmanned air

143

https://doi.org/10.1007%2F978-3-662-56039-6
https://doi.org/10.1007/0-306-48213-4_1
https://doi.org/10.1007/978-3-319-96514-7_7
https://doi.org/10.1007/978-3-319-96514-7_7


www.manaraa.com

vehicle deployed on a moving carrier,” Soft Computing, vol. 20, no. 7, pp. 2905–

2920, 2016.

[69] P. Maini and P. Sujit, “On cooperation between a fuel constrained uav and a

refueling ugv for large scale mapping applications,” in International Conference

on Unmanned Aircraft Systems (ICUAS). IEEE, 2015, pp. 1370–1377.

[70] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot rendezvous planning

for recharging in persistent tasks,” IEEE Transactions on Robotics, vol. 31, no. 1,

pp. 128–142, Feb 2015.

[71] D. Lee, S. A. Zaheer, and J. Kim, “Ad hoc network-based task allocation with

resource-aware cost generation for multirobot systems,” IEEE Transactions on

Industrial Electronics, vol. 61, no. 12, pp. 6871–6881, Dec 2014.

[72] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95 - International Conference on Neural Networks, vol. 4, Nov 1995, pp.

1942–1948 vol.4.

[73] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269,271, 1959-12.

[74] A. Koubaa, Robot Path Planning and Cooperation Foundations, Algorithms and

Experimentations, ser. Studies in Computational Intelligence, 772. Cham:

Springer International Publishing, 2018.

144



www.manaraa.com

Appendix A

Copyright Permissions

The copyright permissions and correspondences for the papers used in this thesis are

provided in this section.

145



www.manaraa.com

146



www.manaraa.com

6/4/2019 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

 
Title: Optimal Positioning of Energy

Assets in Autonomous Robotic
Microgrids for Power Restoration

Author: Shadi Darani
Publication: Industrial Informatics, IEEE

Transactions on
Publisher: IEEE
Date: Dec 31, 1969
Copyright © 1969, IEEE

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

 
Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant: 

  
Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

  
1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011
IEEE. 

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval. 

  
Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

  
1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication] 

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
on-line.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. 

  
If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

    

 
Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 
 

147


	Optimal Mission Planning of Autonomous Mobile Agents for Applications in Microgrids, Sensor Networks, and Military Reconnaissance
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	List of Abbreviations
	Abstract
	Introduction
	Overview
	Autonomous Mobile Microgrid Architecture Optimization
	Resource Scheduling Optimization
	Genetic Algorithms
	Motivations and Objectives
	Thesis Organization

	Background
	Introduction
	Autonomous Mobile Microgrid Architecture Optimization
	Resource Scheduling Optimization
	Genetic Algorithms

	Optimal Positioning of Energy Assets in Autonomous Robotic Microgrids for Power Restoration
	Introduction
	System Modeling
	Indexing Buses and Lines
	Formulate Nodal Bus Admittance Matrix 

	Optimization
	Shortest Path Algorithm
	Genetic Algorithm
	GA Option Setup

	Test Cases
	Case A: One Source, Four Loads, No Obstacles
	Case B, Two Sources, Four Loads, With Obstacles
	Case C: Two Sources, Five Loads, With Obstacles
	Case D: Three Sources, Ten Loads, With Obstacles

	Discussion
	Voltage Constraint Adjustment
	Alternative Objective Functions

	Conclusion

	Recharging of Distributed Loads via Schedule Optimization with Autonomous Mobile Energy Assets
	Introduction
	System Modeling
	Rechargeable Battery Systems
	Time Dependencies

	Scheduling Algorithms
	First Come, First Serve
	Genetic Algorithm Optimized Round-Robin
	Genetic Algorithm Optimized Flexible Round-Robin

	Simulation Case Studies
	Case A: First Come, First Serve Based Methods
	Case B: Round Robin Based Method with GA Optimized Charging Time
	Case C: Flexible Round Robin Based Method with GA Optimized Charging Times

	Hardware Architecture
	Rechargeable Battery Loads
	Wireless Power Transfer
	Husky UGV

	Monte Carlo Simulation Analysis
	Discussion
	Simulation Case Studies
	Monte Carlo Simulations

	Conclusion

	Optimal Mission Routing of UAVs and Collaborative Recharging UGVs for Intelligence, Surveillance, and Reconnaissance
	Introduction
	Related Work
	Problem Formulation and System Modeling
	UAVs
	UGVs
	Target Areas
	Mission Details

	Optimization
	Phase-One: UAV Recon Routing Optimization
	Phase-Two: UAV-UGV Charging Optimization

	Simulation Case Studies
	Case A: One UAV, One UGV, 15 Targets, Minimal Mission Time
	Case B: One UAV, One UGV, Max Area Coverage
	Case C: Two UAVs, One UGV, 15 Targets, Minimal Mission Time
	Case D: Two UAVs, One UGV, Max Area Coverage

	Discussion
	Cases A and C: Minimal Mission Time
	Cases B and D: Max Area Reconnaissance


	Conclusion

	Conclusion
	References
	Copyright Permissions

